
(λζ:Ω є Ω.q ζ ζ) (p (λζ:Ω є Ω.q ζ ζ))

Set-­Theoretic Paradoxes in U and U-­

Bachelor’s Thesis in Mathematics

Author: Rutger Kuyper

Student number: 0715204

Supervisor: Herman Geuvers

Second reader: Wim Veldman

Set-Theoretic Paradoxes in λU and λU-

Bachelor’s Thesis in Mathematics

Author: Rutger Kuyper
Student number: 0715204
Supervisor: Herman Geuvers
Second reader: Wim Veldman

(λζ:Ω є Ω.q ζ ζ) (p (λζ:Ω є Ω.q ζ ζ))

Abstract
The intuitive notion of ‘algorithm’ can be formalized using the
lambda calculus. Adding types to this formalism gives us type
systems, which are in direct correspondence with intuitionis-
tic logics. The type systems λU and λU- are known to be incon-
sistent; that is, their corresponding logics are inconsistent. We
analyze two proofs of this inconsistency, as presented by
A.J.C. Hurkens in 1995 and A. Miquel in 2001. Furthermore, we
try to construct a fixed point combinator by modifying the
proof of A. Miquel.

Spring 2010

iv

Contents

Contents v

Introduction 1

1 Preliminaries 3
1.1 (Untyped) Lambda Calculus 3
1.2 Typed Lambda Calculus 6
1.3 Set Theory . 9

2 λU and λU− 13
2.1 λU and λU− as Pure Type Systems 13
2.2 Logic in λU and λU− 15

3 Hurkens’s Paradox 19
3.1 The Burali-Forti Paradox in Naive Set Theory 19
3.2 Paradoxical Universes 24
3.3 A Paradoxical Universe in λU− 26
3.4 Powerful Universes . 28
3.5 A Powerful Universe in λU− 30
3.6 Reduction Behavior . 31

4 Encoding Naive Set Theory in λU and λU− 33
4.1 Non-Well-Founded Sets 33
4.2 Interpretation in λU . 40
4.3 Interpretation in λU− 47
4.4 Reduction Behavior . 47

A Coq Formalization 51

Bibliography 61

v

vi

Introduction

Since the introduction of the lambda calculus by A. Church in 1936,
paradoxes have been an important topic in both typed and untyped
lambda calculus. The logical inconsistency of the original lambda cal-
culus follows from the Kleene-Rosser paradox, which is quite similar to
Russell’s paradox in naive set theory. To resolve this paradox, the first
typed lambda calculus was introduced: λ→, or the simply typed lambda
calculus. While computationally weaker, this gives us a consistent sys-
tem.

However, over time various other typed lambda calculi have been
introduced, which are not always consistent. In this thesis we study the
systems λU and λU−. Logically, these systems correspond to exten-
sions of higher order logic in which one is allowed to form impredicative
domains.

These systems were originally conceived by J.-Y. Girard in 1972.
At the same time, he showed the inconsistency of λU by formalizing a
variant of the Burali-Forti paradox in naive set theory. At the time, he
did not know if λU− was consistent or inconsistent. This question was
answered by T. Coquand in 1991: λU− is inconsistent as well.

A much simpler proof of the inconsistency of both λU and λU− was
presented by A.J.C. Hurkens in 1995, again based on the Burali-Forti
paradox. Because it is much simpler, it is much easier to analyze the
proof (as we will discuss in a bit).

As discussed above, Girard’s paradox is mainly inspired by the
Burali-Forti paradox. While this is the historically first-known paradox
in naive set theory, it is not the ‘simplest’ paradox. A more elementary
paradox is Russell’s paradox; one might want to formalize this paradox
in λU and λU−. This was done by Miquel in 2001, using so-called
non-well-founded sets which allows one to encode sets as graphs. This
gives another proof of the inconsistency of λU and λU−.

Closely related to the inconsistency of λU and λU− is the ques-
tion if a fixed point combinator exists in these systems. In 1987, D.

1

2 Contents

Howe constructed a looping combinator (which is, roughly speaking, a
combinator which is ‘almost’ a fixed point combinator) from Girard’s
paradox, using a construction proposed by A.R. Meyer and M.B. Rein-
hold in 1986. One can also apply this construction to the (much simpler
to analyze) inconsistency proof of Hurkens. Unfortunately, G. Barthe
and T. Coquand showed in 2006 that this does not give us a fixed point
combinator. Up to this day, it is still an open question if a fixed point
combinator exists in λU or λU−.

This thesis will discuss the inconsistency proofs of Hurkens and
Miquel. Furthermore, we will try to construct a fixed point combinator
from Miquel’s proof. The next chapter will briefly discuss the prelimin-
aries for this thesis: both typed and untyped lambda calculus and some
elementary set theory. In Chapter two we will exhibit the type systems
λU and λU− as so-called Pure Type Systems. Chapter three will discuss
Hurkens’s paradox in detail; in particular we will try to understand the
thoughts and intuition hiding behind the paradox. Finally, Chapter
four will discuss Miquel’s formalization of Russell’s paradox, including
a discussion of the (im)possibilities to turn this paradox into a fixed
point combinator.

1
Preliminaries

In this chapter, we briefly discuss the most important preliminaries ne-
cessary for understanding this thesis: untyped lambda calculus, typed
lambda calculus and set theory.

1.1 (Untyped) Lambda Calculus

The lambda calculus is a formalism used to describe the intuitive no-
tion of ‘algorithm’, just like the (more well-known) Turing machine. In
fact, the expressive power of the lambda calculus is equivalent to that
of Turing machines. These two formalisms can thus be used intermit-
tently.

Then, what makes the lambda calculus different? This is easily seen
if one looks at the way the formalism works: while a Turing machine can
be seen as a big calculator, imperatively doing computations, lambda
calculus uses some sort of abstraction of functions. This difference
is best seen after we give the definition of the terms of the lambda
calculus.

Definition 1.1.1. We presuppose an infinite set Var of variables, de-
noted x, y, . . .

We define the terms of the lambda calculus inductively:

• Every x ∈ Var is a term.

• If M is a term and x ∈ Var , then (λx.M) is a term.

• If M,N are terms, then (M N) is a term.

We call a term of the second kind an abstraction, and a term of
the third kind an application.

We will use M,N, . . . to denote arbitrary lambda-terms.

3

4 1 Preliminaries

The idea of a function should be clear: an abstraction (λx.M) can
be seen as the function x 7→ M . For example, the abstraction (λx.x)
corresponds to the identity, while the abstraction (λx.(λy.x)) corres-
ponds to the first projection of a cartesian product.

To avoid clutter, we will no longer write the brackets if the term does
not become ambiguous by leaving them out. For example, we will write
λx.x and λx.λy.x for the terms above. Furthermore, we will assume
application to be left-associative, i.e. we will write N M1 · · ·Mk for
(· · · ((N M1)M2) · · ·Mk).

Before we continue, we need the notion of free and bound variables.

Definition 1.1.2. Let M be a term. The set of free variables of M ,
denoted FV (M), is defined inductively by:

• FV (x) := {x},

• FV (λx.M) := FV (M)− {x},

• FV (M N) := FV (M) ∪ FV (N).

We call a variable x bound in M if it occurs in M but is not free.
If a term M contains no free variables, we call M a combinator.

For example, the variable x is bound in λx.x, and so are the variables
x and y in λx.λy.x. The variable x is free in x, while the variable z is
neither free nor bound in any of these terms.

Now take a look at the term λy.y. Intuitively, this should be equal to
λx.x, since they both represent the identity. We formalize this intuition
in the next definition.

Definition 1.1.3. Let M,N be terms. If we can obtain M from N by
renaming bound variables, then M = N .

Next, we define substitution on lambda-terms.

Definition 1.1.4. Let M,N be terms and let x ∈ Var . Then we define
the substitution of N in M for x, written as M [x := N], inductively
by:

• x[x := N] = N ,

• y[x := N] = y if y 6= x,

• (λy.M1)[x := N] := (λy.M1[x := N]) if x 6= y and y /∈ FV (N),

1.1 (Untyped) Lambda Calculus 5

• (M1M2)[x := N] := (M1[x := N]M2[x := N]).

The third clause requires some explanation. For example, look at
the term λx.x. Without the requirement that x 6= y, we could do the
substitution (λx.x)[x := y], which would give λx.y. Thus, our identity
function turned into something like a constant function, which is be-
havior we certainly did not want. Conversely, without the requirement
that y /∈ FV (N), we could make the substitution (λy.x)[x := y], which
would give λy.y, turning a constant function into the identity function.

However, the free variable requirement can be fulfilled by renaming
the bound variables in M to fresh variables before doing the substitu-
tion.

Finally, we turn to the last step in our construction of the lambda
calculus. So far we have constructed terms and defined substitution
on them, but we do not yet have any means of actually doing any
calculations with them. The β-reduction rule changes this.

Definition 1.1.5. →β , called β-reduction, is the smallest relation
satisfying

(λx.M)N →β M [x := N]

which is also closed under:

• If M →β N , then λx.M →β λx.N ,

• If M1 →β N , then M1M2 →β N M2,

• If M2 →β N , then M1M2 →β M1N .

We denote =β for the reflexive, symmetric and transitive closure of
→β .

Using→β , we can finally do some computations. We first turn back
to our familiar term λx.x. We now see, that for an arbitrary term M ,
we have that (λx.x)M →β M , illustrating that this term is indeed the
identity.

An important result in the untyped lambda calculus is the existence
of a fixed point combinator (since it forms an essential part of the proof
that the lambda-calculus is Turing complete). Such a combinator is
exactly what the name says: a combinator that assigns to each lambda
term a fixed point of that term.

6 1 Preliminaries

Definition 1.1.6. A fixed point combinator is a combinator M
such that, for all terms f :

f (M f) =β M f

The most famous fixed point combinator is the fixed point combin-
ator Y , discovered by H.B. Curry, which we exhibit below.

Definition 1.1.7. Y := λf.(λx.f (xx)) (λx.f (xx))

Proposition 1.1.8. Y is a fixed point combinator.

Proof. For every term g we have:

Y g = (λf.(λx.f (xx)) (λx.f (xx))) g

→β (λx.g (xx)) (λx.g (xx))

→β g((λx.g (xx)) (λx.g (xx)))

= g (Y g)

Here ends our discussion of the untyped lambda calculus. A more
elaborate (but still elementary) introduction can be found in [Baren-
dregt and Barendsen, 1998]; if one truly wishes to dive into the subject
one could take a look at Barendregt’s major work [Barendregt, 1984].

1.2 Typed Lambda Calculus

Intuitively, the lambda calculus of the previous section is missing some-
thing: while usual functions carry the notions of domain and codomain,
terms in the untyped lambda calculus do not. For example, one can ap-
ply the term λx.x to whatever term ones wants (even to itself!). Typed
lambda calculi introduce the notion of types to solve this issue.

There are various ways to introduce these types, leading to various
type systems. In this section we will study the idea behind these
type systems by looking at a simple example: λ→ (pronounce: lambda-
arrow, or simple type theory).

First, we define the types in λ→.

Definition 1.2.1. We presuppose an infinite set TVar of type vari-
ables, denoted as a, b, . . .

The types of λ→ are defined inductively as follows:

• Every a ∈ TVar is a type.

1.2 Typed Lambda Calculus 7

• If A,B are types, then (A→ B) is a type.

We will use A,B, . . . to denote arbitrary types.

Intuitively, the types A→ B will correspond with functions from A
to B. As we will see below, this is exactly the case.

To avoid clutter, we will once again not write brackets if they are
not necessary to avoid ambiguity. Furthermore, we will assume → to
be right-associative, i.e. we will write A1 → A2 → · · · → An for
(A1 → (A2 → · · · → (An−1 → An) · · ·)).

Next, we will define the pseudoterms of λ→. These pseudoterms
will still contain ‘invalid’ terms, corresponding to invalid function ap-
plication. Therefore, after defining the pseudoterms we will present
derivation rules to select the terms from the pseudoterms.

Definition 1.2.2. We presuppose an infinite set Var of variables, de-
noted x, y,

The pseudoterms of λ→ are defined inductively by:

• Every x ∈ Var is a pseudoterm.

• If M is a pseudoterm, x ∈ Var and A is a type, then (λx:A.M)
is a pseudoterm.

• If M,N are pseudoterms, then (M N) is a pseudoterm.

Once again, we will leave out brackets where possible and assume
application to be left-associative.

The pseudoterms of λ→ are almost the same as the terms of the
lambda-calculus, with one slight (but important) modification: the ad-
dition of a type to the abstractions. These types will be used to denote
the ‘domain’ of the abstraction: for example, the term λx:A.x will be
the identity function of type A→A.

In order to proceed, we first need to define contexts:

Definition 1.2.3. A context is a finite list of declarations of the form
x : A, where x ∈ Var and A is a type, such that every variable occurs
on the left-hand-side of a declaration most once.

In λ→ we will ignore the order of the declarations, and thus look
at a context as just a set instead of a list.

We will use Γ,∆, . . . to denote arbitrary contexts.

Next, we will present the rules to select the valid terms. We do
this by assigning types to certain pseudoterms, and elevating those
pseudoterms with a valid type to the class of terms.

8 1 Preliminaries

Definition 1.2.4. The typing rules of λ→ are defined as follows:

(var)
Γ, x : A ` x : A

if x 6∈ Γ

(λ)
Γ, x : A `M : B

Γ ` λx:A.M : A→ B

(app)
Γ `M : A→ B Γ ` N : A

Γ `M N : B
The terms of λ→ are the pseudoterms M such that there exists a

context Γ and a type A for which we can derive Γ `M : A.

For example, the following derivation shows that λx:A.x is a valid
term and is of type A→ A:

x : A ` x : A
` λx:A.x : A→ A

One might think that we are now done with our discussion of λ→,
since we presented the entire system. However, there is one very im-
portant and surprising result which we want to discuss next: the Curry-
Howard-De Bruijn isomorphism.

This isomorphism gives a correspondence between type theories and
certain intuitionistic logics. In our case, λ→ corresponds to minimal
first-order propositional logic, that is, propositional logic with → as
only connective.

We will not go into too much detail, but will instead sketch the
relation. First, we take a look at the relation between propositions and
types. We can relate these two quite naturally:

• A propositional variable can be seen as a type variable,

• The connective → can be seen as the → used to construct types.

Next, we take a look at the terms. The isomorphism relates terms of
a certain type to derivations or proofs of the corresponding proposition.
More concretely:

• An assumption A corresponds to a variable of type A,

• The introduction rule for → corresponds to abstraction,

• The elimination rule for → corresponds to application.

1.3 Set Theory 9

For example, the term λx:A.x corresponds to the following proof of
the proposition A→ A:

A/
(x)

A→ A
(x)

This correspondence allows for two major applications of typed
lambda calculi. First, we can use them for proof checking : by convert-
ing a mathematical proof to a lambda term, we can check the validity
of the proof by checking the type of the term. But we can do even
more: given the term corresponding to the proof, we can look at the
computational behavior of this proof, allowing us to extract programs
from proof. This practice is called program extraction.

We now end our discussion of λ→ and typed lambda calculi. For a
deeper introduction we refer the reader to [van Raamsdonk, 2008]; the
truly fascinated reader is again encouraged to take a look at [Baren-
dregt, 1984].

1.3 Set Theory

We presuppose some basic knowledge of axiomatic set theory. In this
section, we briefly recall the axioms of the Zermelo-Fraenkel axiom
system and we exhibit some elementary results which we will need
later in this thesis.

Extensionality axiom

∀x∀y[∀z[z ∈ x� z ∈ y]→ x = y]

Axiom scheme of specification
Let ϕ = ϕ(x1, . . . , xn, y) be a formula. Then:

∀x1∀x2 · · · ∀xn∀z∃u∀y[y ∈ u� (y ∈ z ∧ ϕ(x1, . . . , xn, y))]

Pair axiom

∀x∀y∃z∀t[t ∈ z � (t = x ∨ t = y)]

Union axiom

∀x∃y∀t[t ∈ y � ∃u[u ∈ x ∧ t ∈ u]]

10 1 Preliminaries

Axiom scheme of replacement
Let ϕ := ϕ(x1, . . . , xn, y, z) be a formula. Then:

∀x1∀x2 · · · ∀xn∀u[∀y ∈ u∃!z[ϕ(x1, . . . , xn, y, z)]

→ ∃w∀y ∈ u∃z ∈ w[ϕ(x1, . . . , xn, y, z)]]

Infinity axiom

∃x[∃y[y ∈ x ∧ ∀z[¬(z ∈ y)]] ∧
∀y[y ∈ x→ ∃z[z ∈ x ∧ ∀t[t ∈ z � (t ∈ y ∨ t = y)]]]]

Power set axiom

∀x∃y∀z[z ∈ y � ∀t[t ∈ z → t ∈ x]]

The axioms presented up to now form the axiom system ZF−. We
obtain ZF by additionally assuming the axiom scheme of foundation:

Axiom scheme of foundation
Let ϕ = ϕ(x1, . . . , xn, y) be a formula. Then:

∀x1∀x2 · · · ∀xn[∀y[∀z ∈ y[ϕ(x1, · · · , xn, z)]→ ϕ(x1, . . . , xn, y)]

→ ∀y[ϕ(x1, . . . , xn, y)]]

We remark that this is not the form the axiom is usually given in.
The reason for this is that the usual formulation implies the law of the
excluded middle, which, given our intuitionistic point of view in this
thesis, is not a valid principle. The formulation we gave above (which
is often called the principle of ∈-induction) is classically equivalent to
the usual axiom, but is intuitionistically safe.

We remark the following direct corollary of the axiom scheme of
foundation:

Corollary 1.3.1. Axiom scheme of foundation |= ∀y[¬(y ∈ y)].

Proof. Directly using ∈-induction.

There is one particular result which we will use in this thesis, which
we present without proof. A proof can be found in e.g. [Veldman, p.
99].

Lemma 1.3.2. Let x be a set. Then there exists a unique set TC(x)
(called the transitive closure of x) such that:

1.3 Set Theory 11

• x ⊆ TC(x),

• TC(x) is transitive: ∀u∀v[(u ∈ v ∧ v ∈ TC(x))→ u ∈ TC(x)],

• TC(x) is the smallest transitive set containing x; i.e. if y is a
transitive set such that x ⊆ y, then TC(x) ⊆ y.

12

2
λU and λU−

The main type systems studied in this thesis are λU and λU−. There-
fore, we will use this chapter to exhibit those systems and present some
of their properties.

2.1 λU and λU− as Pure Type Systems

We will introduce λU and λU− as specific instances of a class of type
systems called Pure Type Systems. These Pure Type Systems can be
seen as a generalization of Barendregt’s Lambda Cube.

Definition 2.1.1. A Pure Type System is given by a triple (S ,A ,R)
with:

• S a set, called the set of sorts;

• A ⊆ S × S the set of axioms;

• R ⊆ S × S × S the set of rules.

For (s1, s2, s3) ∈ R with s2 = s3 we will write (s1, s2) ∈ R .

Let Var be a set of variables. The pseudoterms of the type system
are:

T ::= S |Var | (ΠVar :T.T) | (λVar :T.T) |T T

The typing rules of the type system are (where s ∈ S):

13

14 2 λU and λU−

(sort) ` s1 : s2
if (s1, s2) ∈ A

(var)
Γ ` A : s

Γ, x : A ` x : A if x 6∈ Γ

(weak)
Γ ` A : s Γ `M : C

Γ, x : a `M : C if x 6∈ Γ

(Π)
Γ ` A : s1 Γ, x : a ` B : s2

Γ ` Πx:A.B : s3
if (s1, s2, s3) ∈ R

(λ)
Γ, x : A `M : B Γ ` Πx:A.B : s

Γ ` λx:A.M : Πx:A.B

(app)
Γ `M : Πx:A.B Γ ` N : A

Γ `M N : B[x := N]

(convβ)
Γ `M : A Γ ` B : s

Γ `M : B if A =β B

If x has no free occurences in B, we also write A→ B for Πx:A.B.
In spirit of the Curry-Howard-De Bruijn isomorphism, if Γ, x : A ` ϕ :
Prop we will also write ∀x:A.ϕ for Πx:A.ϕ.

There are three Pure Type Systems that are relevant to our purpose:
λHOL, λU− and λU . They all have the same sorts and axioms, but
their rules differ slightly, as can be seen on the next page.

Under the Curry-Howard-De Bruijn isomorphism, λHOL corres-
ponds to Higher Order Logic. λU− is obtained from λHOL by adding
the rule (Kind ,Type). In the corresponding logic, this extra rule allows
one to form impredicative domains.

If we also add the rule (Kind ,Prop) to λU−, we obtain λU . The
effect of adding this rule is easily seen if one considers polymorphism.
In λU and λU− one has a polymorphic identity:

id : ΠX:Type.X → X := λX:Type.λx:X.x

One might want to express ∀X:Type.∀x:X.(id X x) =β x. It is easily
seen that we need exactly the (Kind ,Prop)-rule in order to do this.
Thus, λU is obtained from λU− by allowing one to express universal
properties of polymorphic functions.

2.2 Logic in λU and λU− 15

S :=
{

Prop,Type,Kind
}

A :=
{

(Prop,Type), (Type,Kind)
}

λHOL

R λHOL :=
{

(Prop,Prop), (Type,Type),

(Type,Prop)
}

λU−

R λU− := R λHOL ∪
{

(Kind ,Type)
}

λU

R λU := R λU− ∪
{

(Kind ,Prop)
}

Kind

Type

Prop

Type

Prop

There are a lot of facts which one can prove about Pure Type Sys-
tems in general. More details can be found in e.g. [Geuvers and Neder-
hof, 1991].

2.2 Logic in λU and λU−

Using the (Type,Prop) rule, which is available in all three systems
above, it is possible to perform second-order quantification over propos-
itions in the corresponding logic. Using this, we can express all standard
logical constants, connectives and quantifiers by modeling their elimin-
ation rules.

Definition 2.2.1. Let ϕ,ψ : Prop and let A be a variable not free in
ϕ,ψ. Then we define:

> := ∀A:Prop.A→ A

⊥ := ∀A:Prop.A
¬ϕ := ϕ→ ⊥
ϕ ∧ ψ := ∀A:Prop.(ϕ→ ψ → A)→ A

ϕ ∨ ψ := ∀A:Prop.(ϕ→ A)→ (ψ → A)→ A

∃x : A.ϕ := ∀A:Prop.(∀x:A.ϕ→ A)→ A

16 2 λU and λU−

It is easy to check that these terms are typable in all three sys-
tems mentioned above, and that all these terms adhere to their usual
introduction and elimination rules.

We call a PTS inconsistent iff the corresponding logic is inconsist-
ent. Since we now have a term for ⊥, we can use this term to formalize
what it means for a PTS to be inconsistent.

Definition 2.2.2. A Pure Type System is called inconsistent iff there
exists a term M such that `M : ⊥.

λHOL is consistent (i.e. it is not inconsistent). In fact, even if one
adds the (Kind ,Prop)-rule to it, it remains consistent. However, both
λU and λU− are inconsistent; it is their inconsistency which will be
the main topic of this thesis.

Closely related to this inconsistency is the question if a fixed point
combinator of sort Prop exists in λU or λU−.

Definition 2.2.3. A fixed point combinator of sort s is a term
M : ΠA:s.(A→ A)→ A such that for all A : s and f : A→ A we have:

f (M Af) =β M Af

It is not yet known if a fixed point combinator of sort Prop exists
in λU or λU−. Observe that such a combinator in particular yields
an inconsistency proof, by applying it to ⊥ and λx:⊥.x. Therefore,
a logical approach to finding a fixed point combinator of sort Prop
would be to make some modifications to an inconsistency proof. We
will discuss the results of this approach for the inconsistency proofs
presented in this thesis.

Further in this thesis we will need some notion of equality. To this
end, we will use so-called Leibniz equality.

Definition 2.2.4. Let A be a type. Then we define =A, called Leibniz
equality on A, by:

a =A b := ∀P :A→Prop.(P a)→ (P b)

As the name might suggest, for each type A we have that =A is an
equivalence relation on A.

Proposition 2.2.5. For every type A, =A is an equivalence relation
on A.

Proof. We have:

2.2 Logic in λU and λU− 17

• λP :A→Prop.λ0:(P a).0 : a =A a.

• Let 0 : a =A b and let 1 : a =A a. Then 0 (λu:A.u =A a) 1 : b =A

a.

• Let 0 : a =A b and let 1 : b =A c. Then 1 (λu:A.a =A u) 0 : a =A

c.

Therefore, =A is indeed an equivalence relation on A.

We can also formalize the notion of the power set of a type. We
first observe that the subsets of a set V are essentially the same as
the predicates on that set: given a predicate P on V we can form
{v ∈ V | P (v)}. Conversely, given a subset U ⊆ V we can form the
predicate P (v) := v ∈ U . It is easily checked that these operations are
the inverse of each other (modulo logical equivalence). Thus, we can
formalize the power set of a type A as the type of predicates on A.

Definition 2.2.6. Let A be a type. Then we define:

℘A := A→Prop

Finally, we define the image function f→ and the inverse image
function f← of a function f , and the dual relation Rδ of a relation R.

Definition 2.2.7. Let f : A→B. Then we define:

f→ : ℘A→℘B := λX:℘A.λb:B.∃a:A.X a ∧ f a =B b

f← : ℘B→℘A := λY :℘B.λa:A.Y (f a)

Definition 2.2.8. Let R : A→B→C. Then we define:

Rδ : B→A→C := λb:B.λa:A.Ra b

18

3
Hurkens’s Paradox

In this chapter we will study Hurkens’s paradox in λU−, as laid out
in Hurkens [1995]. In particular, we will try to understand the set-
theoretic inspiration behind it. Since his paradox is greatly inspired by
the Burali-Forti paradox in naive set theory1, we will first study this
paradox.

3.1 The Burali-Forti Paradox in Naive Set
Theory

In 1897, Cesare Burali-Forti published in [Burali-Forti, 1897a] what
would later become known as the Burali-Forti paradox. This is the
historically first known paradox in naive set theory. In comparison,
Russell didn’t discover his (more elemental) paradox until 1901.

In this coming section we will derive the Burali-Forti paradox. To
this end, we will study so-called ordinal numbers, which are closely
related to well-founded ordered sets. Therefore, we will take a look at
these well-founded ordered sets first.

Definition 3.1.1. Let V be a set. An ordering on V is a < ⊆ V ×V
such that:

< is irreflexive: ∀u[¬(u < u)]

< is transitive: ∀u, v, w[((u < v) ∧ (v < w))⇒ (u < w)]

If < is an ordering, we call (V,<) an ordered set. We define O to
be the set of all ordered sets.

1By naive set theory, we refer to the set theories as studies by Cantor and Frege
during the end of the nineteenth century. In these set theories, one can form the
set of all objects satisfying a given property.

19

20 3 Hurkens’s Paradox

Definition 3.1.2. Let V be a set. Then we call < ⊆ V × V well-
founded iff the principle of transfinite induction holds for <, i.e.:

For every predicate P (x) we have that ∀v ∈ V [∀w ∈ W [w < v →
P (w)]→ P (v)] implies ∀v ∈ V [P (v)].

If (V,<) is an ordered set such that < is well-founded, we will call
(V,<) a well-founded ordered set.

We first present the following helpful proposition.

Proposition 3.1.3. Let V be a set and let < ⊆ V ×V be well-founded.
Then < is irreflexive.

Proof. We prove, using transfinite induction: ∀v ∈ V [¬(v < v)]:
Let v ∈ V and assume that ∀w ∈W [w < v → ¬(w < w)]. To derive

a contradiction, assume that v < v. Then, by induction hypothesis
we have ¬(v < v), contradicting our assumption that v < v. Thus,
¬(v < v).

Intuitively, one can restrict an order on V to aW ⊆ V by ‘forgetting’
what the order does on the elements not in W . We can formalize this
as follows.

Definition 3.1.4. Let V be a set, let < ⊆ V × V and let W ⊆ V .
Then <�W := < ∩ (W ×W).

It is easy to see that, if (V,<) is an ordered set, then (W,<�W) is
also an ordered set. The next lemma shows that the same holds for
well-foundedness.

Lemma 3.1.5. Let V be a set and let < ⊆ V ×V be well-founded. Let
W ⊆ V . Then <�W is well-founded.

Proof. Let P (x) be a predicate such that:

∀w ∈W [∀x ∈W [x <�W w → P (x)]→ P (w)] (3.1)

Define Q(x) := v ∈W ∧Q(v). Then 3.1 is equivalent to:

∀v ∈ V [∀w ∈ V [w < v → Q(w)]→ Q(v)]

Since < is well-founded, this implies that ∀v ∈ V [Q(v)], which is again
equivalent to ∀w ∈W [P (w)]. Thus, <�W is indeed well-founded.

We will now turn our focus back towards the ordinal numbers we
wish to create. To this end, we take a look at structure-preserving
maps on ordered sets.

3.1 The Burali-Forti Paradox in Naive Set Theory 21

Definition 3.1.6. Let (V,<V) and (W,<W) be ordered sets. An
order-isomorphism is a bijection f : V → W such that, for all
u, v ∈ V :

u <V v ⇔ f(u) <W f(v)

Two ordered sets (V,<V) and (W,<W) are called order-isomorphic
(notation: (V,<V) ∼= (W,<W)) iff there exists an order-isomorphism
f : V →W .

It is easy to see that the relation of two ordered sets being ‘order-
isomorphic’ is an equivalence relation on O, which induces a partition
of O. Using this, we can define order types and our ordinal numbers.

Definition 3.1.7. The order type of an ordered set (V,<) (denoted
as τ(V,<)) is the unique α ∈ O\∼= such that (V,<) ∈ α.

If (V,<) is a well-founded ordered set, we call the order type of
(V,<) the ordinal number of (V,<). We denote Ord for the set of
all ordinal numbers.

Our definition of ordinal numbers differs from the usual one. Most
authors use the term ordinal number to denote the order type of a
well-ordered set, which is a well-founded ordered set (V,<) which is
also total, i.e. ∀x, y ∈ V [x < y ∨ y < x ∨ x = y]. However, requiring
a well-founded order to be total before being allowed to assign it an
ordinal number only complicates our proof of the Burali-Forti paradox.
With our definition we obtain a simpler derivation while the essence re-
mains the same (and it is this essence that is important to us, since we
will abstract from ordinal numbers in the next section anyway). Fur-
thermore, totality is (from an intuitionistic point of view) a very strong
property. Thus, to simplify matters, we drop the totality criterion.

Now that we have constructed the ordinal numbers, our next aim
will be to construct a well-founded ordering <Ord on them. That way,
we can assign an ordinal number to Ord , and we will show that this
ordinal number shows contradictory behavior with respect to <Ord . In
order to construct this ordering we will first take a look at so-called
initial segments.

Definition 3.1.8. Let (V,<) be an ordered set and let v ∈ V . Let
W := {w ∈ V | w < v}. Then I(V,<),v, the initial segment of (V,<)
from v, is defined as I(V,<),v := (W,<�W).

22 3 Hurkens’s Paradox

It is easy to see that, if (V,<) is a (well-founded) ordered set, then
its initial segments are (well-founded) ordered sets. We can also look
at their ordinal numbers, and intuitively we want to call those ordinal
numbers smaller than the ordinal number of the original ordered set.
We use this intuition to define a well-founded ordering on the ordinal
numbers.

Definition 3.1.9. Let α, β be ordinal numbers. Let (V,<V) be a
well-founded ordered set of ordinal number α and let (W,<W) be a
well-founded ordered set of ordinal number β. Then we define α <Ord β
iff (V,<V) is order-isomorphic to some initial segment of (W,<W).

Proposition 3.1.10. (Ord , <Ord) is a well-founded ordered set.

Proof. Since order-isomorphic ordered sets have order-isomorphic ini-
tial segments (as can be seen through restricting the isomorphism),
<Ord is well-defined.

It is easy to check that <Ord is transitive. So, by proposition 3.1.3
we are done if we show that <Ord is well-founded.

Therefore, let P (x) be a predicate such that:

∀α ∈ Ord [∀β ∈ Ord [β <Ord α→ P (β)]→ P (α)] (3.2)

Now let γ ∈ Ord ; we need to show that P (γ) holds. Choose a well-
founded ordered set (V,<) of ordinal number γ. Define:

Q(v) := P (τ(I(V,<),v))

Then 3.2, applied to τ(I(V,<),v), is equivalent to:

∀w ∈ V [w < v → Q(w)]→ Q(v)

Since < is well-founded, this implies that Q(v) holds for all v ∈ V .
Combining this with 3.2, applied to γ, we therefore see that P (γ) holds.

Thus, <Ord is indeed well-founded, and therefore (Ord , <Ord) is in-
deed a well-founded ordered set.

Theorem 3.1.11 (Burali-Forti paradox). Ord is not a set.

Proof. By the preceding lemma, (Ord , <Ord) is well-founded. Let Ω be
its ordinal number.

For each ordinal number α, we see from lemma 3.1.5 that I(Ord ,<Ord),α

is also well-founded. Denote ∆α for its ordinal number. Then we dir-
ectly see that ∆α <Ord Ω, so in particular we have ∆Ω <Ord Ω.

3.1 The Burali-Forti Paradox in Naive Set Theory 23

However, we next prove, through transfinite induction, that for each
ordinal number α we have ∆α 6<Ord α:

Let α be an ordinal number and assume that for all β <Ord α we
have ∆β 6<Ord β. To derive a contradiction, assume ∆α <Ord α. By
induction hypothesis we conclude that ∆∆α

6<Ord ∆α. However, since
∆α <Ord α it is easily seen that I(Ord ,<Ord),∆α

∼= I(I(Ord ,<Ord),α),∆α
and

thus ∆∆α <Ord ∆α, which leads to a contradiction. Thus, ∆α 6<Ord α.
So, in particular we see ∆Ω 6<Ord Ω, which contradicts our earlier

observation that ∆Ω <Ord Ω.

Historical remarks

In his original paper [Burali-Forti, 1897a], Burali-Forti confused well-
ordered sets with what he called perfectly ordered sets. He called a set
V perfectly ordered iff:

1. V has a first element;

2. Every element of V (provided it is not the last) has an immediate
successor;

3. For every element x ∈ V we have either:

(a) x has no immediate predecessor, or

(b) there is an y ∈ V such that y precedes x, y has no immediate
predecessor, and only a finite number of elements of V lie
between y and x.

It can be easily shown that every well-ordered set is perfectly ordered;
the converse was shown to be false by K.G. Hagström in [Hagström,
1914].

However, Burali-Forti quickly realized his mistake and published
a note with a correction [Burali-Forti, 1897b], stating that his result
could be obtained for well-ordered sets just as easily as for his perfectly
ordered sets.

Nonetheless, Burali-Forti’s paradox failed to create as much as a
stir as one would expect it to. Among the reasons were the mistake
mentioned above, but also the fact that Burali-Forti did not present
his result as a contradiction. Instead, he presented it as part of his
attempt to prove that <Ord is not total. However, Cantor already
proved in [Cantor, 1897] that this ordering is in fact total and his proof
was far more convincing.

24 3 Hurkens’s Paradox

A deeper discussion of the history of the Burali-Forti Paradox can
be found in [Copi, 1958].

3.2 Paradoxical Universes

We will now try to abstract the essence of the Burali-Forti paradox, in
order to obtain something that we can formalize in λU and λU−. We
first observe that there are two critical functions which are used in the
proof of the Burali-Forti paradox:

• A function σ : Ord → ℘Ord defined by:

σ(α) :=
{
β ∈ Ord | β <Ord α

}

Thus, σ fully characterizes the ordering on Ord .

• A function τ : ℘Ord → Ord which assigns to each set X of ordinal
numbers the unique ordinal number of (X,<Ord).

Thus, we have two functions to move between Ord and ℘Ord . One
naturally wonders if their compositions exhibit any specific properties.

Let X ∈ ℘Ord be a set of ordinal numbers such that X ∈ Im(σ).
Then, for every β ∈ X we have that all ordinal numbers smaller than
β are also in X, and therefore every initial segment of (X,<Ord) is of
the form (σ(β), <Ord) for some β ∈ Ord . From this we see:

σ ◦ τ(X) = {α | α <Ord τ(X)} = {τ ◦ σ(β) | β ∈ X} = (τ ◦σ)→(X).

(3.3)

It is this property that we capture in the next definition, albeit in
a slightly stronger form (since we will require this property to be true
for all X ∈ ℘Ord).

Definition 3.2.1. A triple (U, σ, τ) with U a set, σ : U → ℘U and
τ : ℘U → U is called a paradoxical universe iff for each X ⊆ U we
have σ ◦ τ(X) = (τ ◦ σ)→(X).

For x, y ∈ U, we will say that x is a predecessor of y (written as
x < y) iff x ∈ σ(y).

As we will shortly see, this notion captures enough of the essence of
the Burali-Forti paradox to obtain a contradiction from the existence

3.2 Paradoxical Universes 25

of such a paradoxical universe, in a method quite like the one employed
in the derivation of the Burali-Forti paradox above. Afterwards, we
will construct a paradoxical universe in λU−, finishing our proof of its
inconsistency.

In order to mimic our derivation of the Burali-Forti paradox, we
want to use something like transfinite induction. However, we do not
know if < is well-founded, so we cannot use transfinite induction dir-
ectly. We remedy this by only looking at those elements of U which
behave decently enough to still comply with transfinite induction. This
is formulated below using subsets instead of predicates; however, as dis-
cussed in section 2.2, these are essentially the same.

Definition 3.2.2. Let (U, σ, τ) be a paradoxical universe.
A subset X ⊆ U is called inductive iff for each x ∈ U, if all

predecessors are in X, then x ∈ X; i.e. ∀x ∈ U[∀y ∈ U[y < x ⇒ y ∈
X]⇒ x ∈ X].

We call an element x ∈ U decent iff x is in each inductive X ⊆ U.

We now proceed with the main result of this section: the derivation
of a contradiction from the existence of a paradoxical universe.

Theorem 3.2.3. There exists no paradoxical universe.

Proof. Let (U, σ, τ) be a paradoxical universe.
Since we want to mimic the Burali-Forti paradox, we want to define

Ω to be the τ of some large set such that both τ ◦ σ(Ω) < Ω and
τ ◦ σ(Ω) 6< Ω. However, since we want to use transfinite induction in
our argument, we want Ω to be decent. To accomplish this, we do not
take τ(U) but instead we define Ω := τ({x ∈ U | x is decent}).

In the proof of the Burali-Forti paradox we took Ω to be the τ of
all ordinal numbers. However, one can easily check through transfinite
induction that all ordinal numbers are decent. Thus, in the case of
ordinal numbers this definition coincides with the one in the Burali-
Forti paradox.

We will first show that Ω is decent. So, let X ⊆ U be inductive.
We need to show that Ω ∈ X. Since X is inductive it is enough to
show that all predecessors of Ω are in X. Since (U, σ, τ) is paradoxical,
those predecessors are:

σ(τ({x ∈ U | x is decent})) = {τ ◦ σ(w) | w ∈ U | w is decent} (3.4)

Therefore, let w ∈ U be decent. To show that τ ◦σ(w) ∈ X it is enough
to show that the set (τ ◦ σ)−1(X) is inductive:

26 3 Hurkens’s Paradox

Let x ∈ U be such that for each y < x we have y ∈ (τ ◦ σ)−1(X),
i.e. τ ◦ σ(y) ∈ X. The predecessors of τ ◦ σ(x) are:

σ(τ ◦ σ(x)) = {τ ◦ σ(y) | y ∈ σ(x)} = {τ ◦ σ(y) | y < x} (3.5)

Thus, all predecessors of τ ◦ σ(x) are in X, and therefore τ ◦ σ(x) ∈ X,
which is the same as x ∈ (τ ◦ σ)−1(X). So, (τ ◦ σ)−1(X) is indeed
inductive, as claimed.

Since w is decent, we therefore have w ∈ Y , which is equivalent to
τ ◦ σ(w) ∈ X. Thus, all predecessors of Ω are in X and since X is
inductive this implies that Ω ∈ X. Therefore, Ω is indeed decent.

We thus see see from (3.4) that τ ◦ σ(Ω) < Ω. On the other hand,
the set Z := {y ∈ U | τ ◦ σ(y) 6< y} is inductive:

Let x ∈ U be such that for each y < x we have y ∈ Z, i.e. τ ◦σ(y) 6<
y. Suppose that τ ◦ σ(x) < x. Then (by taking y = τ ◦ σ(x)) we see
that τ ◦ σ(τ ◦ σ(x)) 6< τ ◦ σ(x). However, from (3.5) we also know that
τ ◦ σ(τ ◦ σ(x)) < τ ◦ σ(x). Thus, τ ◦ σ(x) 6< x, which is the same as
x ∈ Z. Therefore, Z is indeed inductive.

Since Ω is decent, we thus see τ ◦ σ(Ω) 6< Ω. This contradicts our
earlier observation that τ ◦ σ(Ω) < Ω

3.3 A Paradoxical Universe in λU−

It is easy to see that the entire argument above can be formalized in
λHOL. However, λHOL is not expressive enough to find a paradoxical
universe (in the empty context), which of course makes sense if one
recalls that λHOL is consistent. We will now try to find a paradoxical
universe which we can formalize in λU−.

Since λU− is obtained from λHOL by making Type impredicative
and since the Burali-Forti paradox heavily relies on impredicativity
(namely by taking the ordinal number of the set of all ordinal num-
bers), it would make sense to construct a paradoxical universe through
impredicative means. Therefore, we choose to study pairs (X, r) with
X : Type and r : ℘X→X. Such a pair can be seen as a paradoxical uni-
verse (U, σ, τ) in which we have left out the function σ (in particular,
the paradoxical universe that we are now constructing also yields such
a pair, illustrating the impredicativity of our definition).

Intuitively, one can see r as a function which ‘reflects’ each subset
of X back into X. Therefore, we will colloquially refer to such an r as
a reflection of X.

3.3 A Paradoxical Universe in λU− 27

We could assign to each such pair (X, r) an element of ℘X, e.g. we
could send the pair (X, r) to {r(X), r(∅)}, or we could take the entire
image of r. These operations can intuitively be seen as ‘reflecting the
reflections’. We will construct a paradoxical universe by looking at all
such reflections of reflections. Therefore, we define:

U := ΠX:Type.(℘X→X)→℘X

Thus, a term u : U sends a reflection (X, r) to a set ℘X. We have a
natural way to turn this into a paradoxical universe.

First, we construct τ : ℘U→U. Let V : ℘U. We want to construct
a term of type U, so let X : Type and r : ℘X→X. Looking at the
definition of paradoxical universes, it would make sense to try finding
a suitable term ϕ(X,r) : U→X and then take τ V X r to be ϕ→(X,r) V .

So, let f : U. Such an f gives us a term of type ℘X by taking
f X r. However, we can easily reflect this into a term of type X by
taking r (f X r). This leads us to the following definition:

ϕ(X,r) : U→X := λf :U.r (f X r)

By the argument given above, we now define τ as follows:

τ : ℘U→U := λV :℘U.λX:Type.λr:℘X→X.ϕ→X,r V

We now have a natural way to construct σ : U→℘U. Let f : U.
Then we can look at how f reflects the reflection τ , that is, we can take
σ f to be f U τ . From this we obtain:

σ : U→℘U := λf :U.f U τ

It is now easy to check that (U, τ, σ) forms a paradoxical universe.
First observe that for every f : U we have ϕU,τ f =β (τ ◦σ) f . Now we
have for every V ∈ ℘U:

(σ ◦ τ)V =β (τ V) U τ =β ϕ
→
U,τ V =β (τ ◦ σ)→ V

Thus, (U, τ, σ) forms a paradoxical universe. It is easy to see that
this universe can be formalized in λU−, which proves the inconsistency
of λU−.

Theorem 3.3.1. λU− is inconsistent.

28 3 Hurkens’s Paradox

3.4 Powerful Universes

The Burali-Forti paradox can be further abstracted than we have done
above, which leads us to a proof term which exhibits simpler reduc-
tion behavior. This time, we obtain our inspiration from the following
functions on Ord and ℘℘Ord :

• A function σ′ : Ord → ℘℘Ord defined by:

σ′(α) :=
{
V ∈ ℘Ord | σ(α) ⊆ V

}

So, a set X ⊆ Ord is inductive in the sense of definition 3.2.2 iff
for every α ∈ Ord we have X ∈ σ′(α) ⇒ α ∈ X. We can thus
use σ′ to fully characterizes the inductive subsets of Ord .

• A function τ ′ : ℘℘Ord → Ord which assigns to C ∈ ℘℘Ord the
ordinal number of ∩C.

So, instead of looking at predecessors as we did for powerful uni-
verses, we now abstract to inductive subsets. Still, we do not fully lose
sight of our predecessors, since for every α ∈ Ord we have ∩(σ′(α)) =
σ(α) which contains exactly the predecessors of α. However, the notion
of predecessor now comes second to the notion of inductive sets.

The compositions still exhibit a nice property. Let C ∈ ℘℘Ord be
such that C ∈ Im(σ′). Take α ∈ Ord such that C = σ′(α). Then we
have:

σ′ ◦ τ ′(C) =
{
V ⊆ Ord | σ ◦ τ(∩C) ⊆ V

}

=
{
V ⊆ Ord | σ ◦ τ(σ(α)) ⊆ V

}

Using equation 3.3, we now find:

=
{
V ⊆ Ord | {τ ◦ σ(β) | β ∈ σ(α)} ⊆ V

}

=
{
V ⊆ Ord | σ(α) ⊆ (τ ◦ σ)←(V)

}

Finally, using the definition of σ′:

=
{
V ⊆ Ord | (τ ◦ σ)←(V) ∈ C

}

= ((τ ◦ σ)←)←(C) = ((τ ′ ◦ σ′)←)←(C)

We capture our new-found abstraction in the next definition, again
in a slightly stronger form.

3.4 Powerful Universes 29

Definition 3.4.1. A triple (U, σ, τ) with U a set, σ : U → ℘℘U and
τ : ℘℘U → U is called a powerful universe iff for each C ∈ ℘℘U we
have σ ◦ τ(X) = ((τ ◦ σ)←)←(C).

A set X ⊆ U is called inductive iff ∀x ∈ U[X ∈ σ(x) ⇒ x ∈ X],
and we call an element x ∈ U decent iff x is in each inductive X ⊆ U.

For x, y ∈ U, we will say that x is a predecessor of y (written as
x < y) iff x ∈ ∩(σ(y)).

We now proceed with the main result of this section: we show that
we can derive a contradiction from the existence of a powerful universe.

Theorem 3.4.2. There exists no powerful universe.

Proof. Let (U, σ, τ) be a powerful universe.
We once again want Ω to be the τ of some large set such that both

τ ◦σ(Ω) < Ω and τ ◦σ(Ω) 6< Ω. We also once again want Ω to be decent.
To accomplish this, we take Ω := τ({X ⊆ U | X is inductive}).

One can easily check, through transfinite induction, that the only
inductive subset of Ord is Ord itself. Thus, in the case of ordinal
numbers, Ω remains the same as in the Burali-Forti paradox.

We will first show that Ω is decent. So, let X ⊆ U be inductive. We
need to show that Ω ∈ X, and since X is inductive it is thus enough to
show that X ∈ σ(Ω). Since (U, σ, τ) is powerful, we find:

σ(Ω) = σ(τ({X ⊆ U | X is inductive}))
= {X ⊆ U | (τ ◦ σ)←(X) is inductive} (3.6)

We thus need to show that (τ ◦ σ)←(X) is inductive. So, let x ∈ U
with (τ ◦ σ)←(X) ∈ σ(x). Since (U, σ, τ) is powerful, we have:

σ ◦ τ ◦ σ(x) = {Y ⊆ U | (τ ◦ σ)←(Y) ∈ σ(x)} (3.7)

Thus, X ∈ σ ◦τ ◦σ(x). Since X is inductive, this means that τ ◦σ(x) ∈
X, or equivalently x ∈ (τ ◦ σ)←(X). Therefore, (τ ◦ σ)←(X) is indeed
inductive.

By equation (3.6) we now see X ∈ σ(Ω). Since X is inductive, this
means that Ω ∈ X. Therefore, Ω is indeed decent.

We first show that τ ◦ σ(Ω) < Ω. Therefore, let X ∈ σ(Ω). By
equation (3.6) this means that (τ ◦ σ)←(X) is inductive. Since Ω is
decent, we see that Ω ∈ (τ ◦σ)←(X), i.e. τ ◦σ(Ω) ∈ X. We thus see that
τ ◦ σ(Ω) < Ω. On the other hand, the set Z := {y ∈ U | τ ◦ σ(y) 6< y}
is inductive:

30 3 Hurkens’s Paradox

Let x ∈ U be such that Z ∈ σ(x). Suppose that τ ◦σ(x) < x. Then
(by taking y = τ ◦σ(x)) we see that τ ◦σ(τ ◦σ(x)) 6< τ ◦σ(x). However,
we claim that we also have τ ◦ σ(τ ◦ σ(x)) < τ ◦ σ(x):

We let X ∈ σ ◦ τ ◦ σ(x). As seen in (3.7), this is the same as
(τ ◦σ)←(X) ∈ σ(x). Since we assumed that τ ◦σ(x) < x we thus know
that τ ◦ σ(x) ∈ (τ ◦ σ)←(X), i.e. τ ◦ σ ◦ τ ◦ σ(x) ∈ X. Therefore, we
indeed have τ ◦ σ(τ ◦ σ(x)) < τ ◦ σ(x).

From this contradiction we see that τ ◦σ(x) 6< x, which is equivalent
to x ∈ Z. Thus, Z is indeed inductive. Since Ω is decent, we see that
Ω ∈ Z, which means that τ ◦ σ(Ω) 6< Ω. This contradicts our earlier
observation that τ ◦ σ(Ω) < Ω.

3.5 A Powerful Universe in λU−

The motivation here is mostly the same as for our paradoxical universe
in section 3.3. The entire argument can still be formalized in λHOL, but
we once again need more expressivity to construct a powerful universe.

This time, we study pairs (X, r) with X : Type and r : ℘℘X→X.
Such pairs can be seen as powerful universes (U, σ, τ) in which we left
out σ, not unlike what we did in the construction of our paradoxical
universe.

Furthermore, we can once again see r as a kind of ‘reflection’, this
time from ℘℘X into X. Just as for our paradoxical universe, we con-
struct a powerful universe by looking at reflections of reflections. There-
fore, we define:

U := ΠX:Type.(℘℘X→X)→℘℘X

We first construct τ : ℘℘U→U. Looking at the definition of power-
ful universes and our paradoxical universe in section 3.3, the following
is a natural candidate:

τ : ℘℘U→U := λV :℘℘U.λX:Type.λr:℘℘X→X.(ϕ←X,r)← V

The construction of σ is essentially the same as for the paradoxical
universe:

σ : U→℘℘U := λf :U.f U τ

It is once again easy to check that (U, τ, σ) forms a powerful uni-
verse. First observe that for every f : U we still have ϕU,τ f =β (τ◦σ) f .

3.6 Reduction Behavior 31

From this we obtain for every V ∈ ℘℘U:

(σ ◦ τ)V =β (τ V) U τ =β (ϕ←U,τ)← V =β ((τ ◦ σ)←)← V

Since also this powerful universe can be formalized in λU−, we have
another proof of the inconsistency of λU−. This gives a term of type
⊥, which can be seen below.

∆ := λy:U.¬∀p:℘U((σ y p)→ (p τ (σ y)))

Ω := the normal form of τ λp:℘U.∀x:℘U.((σ x p)→ (p x))

(λ0:∀p:℘U.(∀x:U.((σ x p)→ (p x))→ (pΩ)).

(((0 ∆)λx:U.λ2:(σ x∆).λ3:∀p:℘U.((σ x p)→ (p τ (σ x))).

(((3 ∆) 2)λp:℘U.(3λy:U.(p τ (σ y)))))

λp:℘U.(0λy:U.(0λy:U.(p τ (σ y))))

λp:℘U.λ1:∀x:U.((σ x p)→ (p x)).((1 Ω)λx:U.(1 τ (σ x)))) : ⊥

If one completely spells out the proof term of section 3.3, one can
compare it with the proof term above. This way, we see that this proof
term is indeed simpler in the sense that it contains fewer applications
corresponding to modus ponens: the proof term corresponding to sec-
tion 3.3 has 12 of such applications, while this term only has 6.

3.6 Reduction Behavior

The reduction behavior of Hurkens’s paradox has been studied extens-
ively. We briefly present the most important results.

Hurkens already observed that the term as presented above almost
reduces to itself. The reason it does not exactly reduce to itself is that
τ (σ x) 6=β x, which causes the types in the lambda-abstractions to
explode. More details can be found in [Hurkens, 1995].

Because the term does not exactly reduce to itself, it is hard to
turn this term into a fixed point combinator. One could try the ap-
proach as suggested in [Meyer and Reinhold, 1986]. This gives us a
looping combinator, which can be roughly described as a combinator
that is almost a fixed point combinator. Unfortunately, in [Barthe and
Coquand, 2006] it is shown that this does not give us a fixed point
combinator.

32

4
Encoding Naive Set Theory in λU and λU−

An obvious method to prove the inconsistency of λU and λU− would be
to encode naive set theory in it, and then look at the term corresponding
to a set-theoretic paradox (like Russell’s paradox or the Burali-Forti
paradox discussed above).

To this end, we will set up a correspondence between so-called non-
well-founded sets and pointed graphs and encode these graphs in λU .
Afterwards, we will show the same can be done in λU−, be it with some
minor changes.

4.1 Non-Well-Founded Sets

In this chapter we will make heavy use of pointed graphs. Therefore,
we start with their definition.

Definition 4.1.1. A graph is a tuple (V,E) with V a set (called the
vertices) and E ⊆ V × V (called the edges).

A pointed graph ((V,E), p) consists of a graph (V,E) and a dis-
tinguished vertex c ∈ V (called the point).

We will draw edges (a, b) as an arrow from a to b, and when drawing
a pointed graph we will draw the point as a square.

To simplify our further discussion, we introduce the concept of chil-
dren of a vertex. Intuitively speaking, these are the elements directly
‘below’ a vertex.

Definition 4.1.2. Let (V,E) be a graph and let v ∈ V . Then Ev :=
{w ∈ V | (v, w) ∈ E} is called the set of children of v.

The main idea of this chapter is that we want to represent sets using
pointed graphs. Intuitively, one can represent a set x as a pointed graph

33

34 4 Encoding Naive Set Theory in λU and λU−

by letting the point be x itself, then drawing all the elements u ∈ x
and connecting them to x by an edge, then drawing all the elements
of those elements and connecting them to the sets of which they are
elements, and so on. An example can be seen below.

A A A

B ∅{∅} {∅}
B ∅

{{∅}}

{∅}
B ∅

{{∅}}

Figure 4.1: Building a picture of A := {{{{∅}} , {∅}} , {∅} , ∅} where
B := {{{∅}} , {∅}}.

Thus, given a set we have constructed a graph and an assignment
of sets to the vertices such that the set assigned to a vertex is the same
as the set of the sets assigned to its children. We will call such an
assignment a decoration of the graph and such a graph a picture of the
set.

Definition 4.1.3. A decoration of a graph (V,E) is a collection
(xv)v∈V such that for every v ∈ V :

xv = {xc | c ∈ Ev}

A pointed graph ((V,E), p) is called a picture of a set x iff there
exists a decoration (xv)v∈V of (V,E) such that x = xp.

This definition captures exactly what we wanted: all assignments
in figure 4.1 are decorations and the last pointed graph is a picture of
{{{{∅}} , {∅}} , {∅} , ∅}. We can now formalize our intuitive argument
as given above and show that we can build a picture for every set.

Proposition 4.1.4. ZF− |= Every set has a picture.

Proof. Let x be a set. We define V := TC(x) (where TC is as given
in lemma 1.3.2) and E := {(v, w) | v, w ∈ V | w ∈ v}. It is then easy
to see that the collection (v)v∈V is a decoration of (V,E), from which
follows that ((V,E), x) is a picture of x.

4.1 Non-Well-Founded Sets 35

However, there are pointed graphs which, assuming ZF, are not a
picture of any set. For example, consider the following pointed graph:

a

Figure 4.2: A pointed graph which is not a picture in ZF.

This pointed graph is a picture of the ‘set’ Ω = {Ω}. However, if one
assumes ZF we see from corollary 1.3.1 that Ω is not a set. Nonetheless,
it is not intuitively clear why we would not allow a set like this to exist.
So, why don’t we postulate that every pointed graph is the picture of a
set, or equivalently that every graph has a decoration, instead of assum-
ing the axiom scheme of foundation? We refer the unconvinced reader
to the end of this section for some more (philosophical) discussion of
this question.

Furthermore, we wonder if we should require the decorations of a
graph to be unique. To this end, we first take a look what happens if
one assumes ZF. In this case, the proposition below shows that every
graph can have at most one decoration.

Proposition 4.1.5. ZF |= Every graph has at most one decoration.

Proof. Let (V,E) be a graph and let (xv)v∈V , (yv)v∈V be two decor-
ations of (V,E). Let ϕ(x) := ∀v ∈ V [x = xv → x = yv]. We prove,
using ∈-induction: ∀x[ϕ(x)].

So, let x be a set and let v ∈ V such that x = xv. Since (xw)w∈V is a
decoration, we know that xv = {xc | c ∈ Ev}. Therefore, by induction
hypothesis we know that ϕ(xc) holds for all c ∈ Ew, which in particular
implies xc = yc. From this we see, using extensionality:

x = xv = {xc | c ∈ Ev} = {yc | c ∈ Ev} = yv

Thus, we obtain using ∈-induction: ∀x[ϕ(x)]. In particular, we see
that for all v ∈ V we have that ϕ(xv) holds, which implies xv = yv.
Therefore the graph can have at most one decoration.

In spirit of this proposition, it makes sense to not only require each
graph to have a decoration, but to also require this decoration to be

36 4 Encoding Naive Set Theory in λU and λU−

unique. Therefore, we replace the axiom scheme of foundation by the
following axiom, which is due to Peter Aczel in [Aczel, 1988].

Axiom 4.1 (Anti-Foundation Axiom (AFA)). Every graph has a
unique decoration.

The first question which arises from this axiom is the question if
ZF−+AFA is consistent relative to ZF−. We postpone this question
until the end of this section, where we will prove the relative consistency
in theorem 4.1.10.

To simplify our use of the anti-foundation axiom, we introduce a
notation for the unique set to which a pointed graph corresponds

Definition 4.1.6. Let ((V,E), p) be a pointed graph and let (xv)v∈V be
its unique decoration. Then we define d((V,E), p) := xp, i.e. d((V,E), p)
is the unique set of which ((V,E), p) is a picture.

So, we now know that we can assign a unique set to each pointed
graph. However, we wonder if the converse is true: does each set have a
unique picture? Existence is guaranteed by proposition 4.1.4, however,
figure 4.3 shows that uniqueness in general does not hold.

{{∅} , ∅} {{{∅} , ∅}} {{∅} , ∅}

{∅}
∅

∅

{{∅} , ∅}

{∅}
∅

∅

{∅}
{∅}

∅

∅

Figure 4.3: Three pictures (with their unique decoration) of the Von
Neumann natural number 2.

Nonetheless, we do have a weaker result: we will show below that
each set has a unique picture up to bisimulation. Intuitively, a bisim-
ulation is a relation which respects the pointed graph-structure, i.e.
it relates the points and respects arrows. This is made precise in the
definition below.

4.1 Non-Well-Founded Sets 37

Definition 4.1.7. Let ((V,E), p) and ((W,F), q) be pointed graphs.
Then a bisimulation from ((V,E), p) to ((W,F), q) is a relation R ⊆
V ×W such that:

• pRq;

• For all v ∈ V , w ∈W such that vRw:

– For all a ∈ Ev there exists a b ∈ Fw such that aRb.

– For all b ∈ Fw there exists an a ∈ Ev such that aRb.

Two pointed graphs ((V,E), p) and ((W,F), q) are called bisimular
(notation: ((V,E), p) ' ((W,F), q)) iff there exists a bisimulation from
((V,E), p) to ((W,F), q).

Figure 4.4: Example of a bisimulation.

We will now proceed with the main result of this section: each set
has a unique picture up to bisimulation.

Theorem 4.1.8. ZF−+AFA |= Let ((V,E), p) and ((W,F), q) be two
pointed graphs. Then:

d((V,E), p) = d((W,F), q)⇔ ((V,E), p) ' ((W,F), q)

Proof. Let (xv)v∈V be the unique decoration of ((V,E), p) and let
(yw)w∈W be the unique decoration of ((W,F), q).

First, let d((V,E), p) = d((W,F), q). Define the relation R ⊆ V ×W
through vRw ⇔ xv = yw. Then it is easily checked that R is a bisim-
ulation from ((V,E), p) to ((W,F), q). Thus, (V,E), p) ' ((W,F), q).

Conversely, let ((V,E), p) ' ((W,F), q). So, let S be a bisimulation
from ((V,E), p) to ((W,F), q).

Define:

G := {((v1, w1), (v2, w2)) | (v1, w1), (v2, w2) ∈ S | v2 ∈ Ev1 ∧ w2 ∈ Fw1}

38 4 Encoding Naive Set Theory in λU and λU−

If we let X(a,b) := xa and Y(a,b) := yb, then (Xs)s∈S and (Ys)s∈S are
both decorations of (S,G):

Let (v, w) ∈ S. Since G is a bisimulation we know that for all
a ∈ Ev there exists a b ∈ Fw such that (a, b) ∈ S, thus (a, b) ∈ G(v,w).
Conversely, if (a, b) ∈ G(v,w) then in particular a ∈ Ev. Using this we
see:

X(v,w) = xv = {xa | a ∈ Ev} =
{
xa | (a, b) ∈ G(v,w)

}

=
{
X(a,b) | (a, b) ∈ G(v,w)

}
.

Therefore, (Xs)s∈S is indeed a decoration of (S,G). Analogously we
find that (Ys)s∈S is also a decoration of (S,G).

From this we see that ((S,G), (p, q)) is a picture of both d((V,E), p)
and d((W,F), q). Thus, by the anti-foundation axiom: d((V,E), p) =
d((W,F), q).

Together with proposition 4.1.4 this tells us that a set is charac-
terized by an equivalence class of bisimular pointed graphs. The next
corollary tells us how the ∈-relation on sets translates to these equival-
ence classes.

Corollary 4.1.9. ZF−+AFA |= Let ((V,E), p) and ((W,F), q) be two
pointed graphs. Then d((V,E), p) ∈ d((W,F), q) ⇔ ∃q′ ∈ W [(q, q′) ∈
F ∧ ((V,E), p) ' ((W,F), q′).

{{∅}} {{{∅}} , ∅}

{∅}

∅

{{∅}} ∅

{∅}

Figure 4.5: Example of the lifted ∈-relation.

We now exhibit an important theoretical result, which we prom-
ised when we introduced the anti-foundation axiom: the consistency of
ZF−+AFA relative to ZF−.

4.1 Non-Well-Founded Sets 39

Theorem 4.1.10. If ZF− is consistent, then so is ZF−+AFA.

Proof. The proof is quite technical, so we only sketch the main idea.
The details can be found in [Barwise and Moss, 1996, Chapter 9].

We translate each formula ϕ to a formula ϕ̃ as follows:

• We replace each quantification over sets by a quantification over
pointed graphs.

• We replace set equality by bisimulation.

• We replace the ∈ relation by the relation as given in corollary
4.1.9.

We claim that, if ϕ is provable using ZF−+AFA, then ϕ̃ is provable
using ZF−. To prove this, it is enough to show that the translation
of each axiom of ZF−+AFA is provable using ZF−; this is shown in
[Barwise and Moss, 1996, Chapter 9].

The relative consistency now follows by considering ϕ := ⊥.

Further discussion on the axiom scheme of founda-
tion and AFA

The axiom scheme of foundation is often justified through the cumu-
lative hierarchy of sets. In this motivation, the universe of sets is built
in stages, with one stage for every ordinal number. At stage 0, we only
have the empty set. At every later stage, we form all the sets which we
can make by using sets from the previous stage. The universe of sets
is then the collective union of all these stages.

It is easy to check that all sets made this way satisfy the axiom
scheme of foundation (by transfinite induction over the stages). Still,
since the cumulative argument does not capture the way we actually
form sets, the argument fails to convince.

Furthermore, the axiom scheme of foundation is not used in our
‘daily’ mathematical activity. It is more of a set-theoretical invention
which can be used to shape some order in the chaotical world of set
theory. Or, as Paul Cohen stated in [Cohen, 1966]: “This axiom is a
somewhat artificial one and we include it for technical reasons only”.

Even worse, recently non-well-founded sets (that is, sets which defy
the axiom scheme of foundation) appeared in practice. For example,
Aczel’s original reason to study non-well-founded sets grew out of a
problem in computer science on the theory of concurrent processes.

40 4 Encoding Naive Set Theory in λU and λU−

This shows that the axiom scheme of foundation is not as innocent as
some people make it out to be, and opens the discussion for replacing
the axiom scheme of foundation with the anti-foundation axiom.

We further remark that the anti-foundation axiom we have intro-
duced is not the only way to introduce non-well-founded sets. Two
other (non-equivalent) anti-foundation axioms are due to P. Finsler
and Dana Scott. More on them can be found in e.g. [Aczel, 1988].

4.2 Interpretation in λU

As mentioned above, we want to prove the inconsistency of λU by
interpreting naive set theory in it. In spirit of theorem 4.1.8, we can
see a set as an equivalence class of bisimular pointed graphs. Therefore,
we will be formalizing our sets as pointed graphs, as done by Alexandre
Miquel in [Miquel, 2001, chapter 8].

Definition 4.2.1. A pointed graph in λU is a tuple ((V,E), p) with
V : Type, E : V→V→Prop and p : V .

To simplify our notation, we introduce abbreviations as follows.

Definition 4.2.2.

PGraph→M := ΠV :Type.(V→V→Prop)→V→M
λ((V,E), p).M := λV :Type.λE:V→V→Prop.λp:V.M
∀((V,E), p).M := ∀V :Type.∀E:V→V→Prop.∀p:V.M
∃((V,E), p).M := ∃V : Type.∃E : V→V→Prop.∃p : V.M

We now define bisimularity in λU and characterize ∈ using corollary
4.1.9.

Definition 4.2.3.

EQV : PGraph→PGraph→Prop :=

λ((V,E), p).λ((W,F), q).∃R : (V→W→Prop).

(Rp q) ∧
(∀v:V.∀a:V.∀w:W.(E v a)→ (Rv w)

→ ∃b : W.(Ra b) ∧ (F w b)) ∧
(∀w:W.∀b:W.∀v:V.(F w b)→ (Rv w)

→ ∃aV.(Ra b) ∧ (E v a))

4.2 Interpretation in λU 41

We will write ((V,E), p) ' ((W,F), q) for EQV V E pW F q.

ELT : PGraph→PGraph→Prop :=

λ((V,E), p).λ((W,F), q).∃q′ : W.

(F q q′) ∧ (((V,E), p) ' ((W,F), q′))

We will write ((V,E), p) ∈ ((W,F), q) for ELT V E pW F q.

From theorem 4.1.8 we know, amongst other things, that ' is an
equivalence relation. However, we cannot formalize this argument in
λU , since we do not have any set theory in λU (yet). Since we do
however want to use this fact, we prove it directly in λU .

Proposition 4.2.4. Bisimilarity ' is an equivalence relation on the
universe of pointed graphs.

Proof. Let ((V,E))p), ((W,F), q) and ((X,G), r) be pointed graphs.
It is easy to check that:

• The relation R given by λv:V.λw:V.v =V w, where =V is Leibniz-
equality on V , is a bisimulation from ((V,E), p) to ((V,E), p).

• If S is a bisimulation from ((V,E), p) to ((W,F), q), then R
defined by λw:W.λv:V.S w v is a bisimulation from ((W,F), q) to
((V,E), p).

• If S is a bisimulation from ((V,E), p) to ((W,F), q) and T is a
bisimulation from ((W,F), q) to ((X,G), r), then R defined by
λv:V.λx:X.∃w:W.S v w ∧ T w x is a bisimulation from ((V,E), p)
to ((X,G), r).

Thus, ' is indeed an equivalence relation.

Since we want to use ' as our equality, we show that it obeys the
substitution property for ∈.

Lemma 4.2.5. If ((V,E), p) ' ((W,F), q), ((X,G), r) ' ((Y,H), s)
and ((V,E), p) ∈ ((X,G), r), then ((W,F), q) ∈ ((Y,H), s).

Proof. Since ((V,E), p) ∈ ((X,G), r), there exists an r′ : X with Gr r′

and ((V,E), p) ' ((X,G), r′).
Let R be a bisimulation from ((X,G), r) to ((Y,H), s). Since we

have Gr r′ there exists an s′ : Y with H ss′ and Rr′ s′. But then

42 4 Encoding Naive Set Theory in λU and λU−

it is easily checked that R is also a bisimulation from ((X,G), r′) to
((Y,H), s′), thus ((X,G), r′) ' ((Y,H), s′).

This gives us ((W,F), q) ' ((V,E), p) ' ((X,G), r′) ' ((Y,H), s′)
and we have H ss′, so indeed ((W,F), q) ∈ ((Y,H), s′).

We now have a means of interpreting sets in λU , through pointed
graphs. Since we want to form impredicative set-theoretic paradoxes,
we would like to have a type corresponding to the collection PGraph of
all pointed graphs. Because of the lack of Σ-types in λU , this is not
directly possible.

However, we can find a type for ℘℘PGraph , and we can easily embed
all pointed graphs in this type by sending each pointed graph ((V,E, p)
to

{
Y ∈ ℘PGraph | ((V,E), p) ∈ Y

}
. We formalize this as follows.

Definition 4.2.6.

U : Type := (PGraph→Prop)→Prop
i : PGraph→U := λ((V,E), p).λP :PGraph→Prop.P V E p

Observe that we need the (Kind ,Type) quantification of λU and
λU− to define U. Thus, the above cannot be done in λHOL.

The i given above is injective, in the sense as described in the lemma
below.

Lemma 4.2.7. For all pointed graphs ((V,E), p), ((W,F), q) satisfying
(i V E p) =U (i W F q) we have ((V,E), p) ' ((W,F), q).

Proof. Consider the predicate P : U→Prop with P (u) expressing ‘the
singleton-set {((V,E), p)} is in u’, i.e.:

P := λu:U.u (λ((X,G), r).((V,E), p) ' ((X,G), r))

It is easily checked that P (i V E p) and ((V,E), p) ' ((V,E), p)
are β-convertible, and similarly that P (i W F q) and ((V,E), p) '
((W,F), q) are convertible. The first holds by reflexivity of ', so we
find ((V,E), p) ' ((W,F), q), as desired.

Observe that i is not surjective. As should be intuitively clear,
∅ ∈ ℘℘PGraph is not in the image of i . We will call the elements in the
image of i sets, since we are using i to embed pointed graphs, which in
turn represent sets.

4.2 Interpretation in λU 43

Definition 4.2.8. We call u : U a set iff u is in the image of i , i.e. iff
set u holds, where set is defined as:

set : U→Prop := λu:U.∃((V,E), p).u =U (i V E p)

We want to use the fact that i is not surjective later on. Therefore,
we let out be ∅ ∈ ℘℘PGraph as described above and we prove that it
is indeed not in the image of i .

Definition 4.2.9.

out : U := λP :(PGraph→Prop).⊥

Lemma 4.2.10. out is not a set.

Proof. Assume there exists a pointed graph ((V,E), p) such that we
have (i V E p) =U out . Let P : U→Prop be the predicate with P (u)
expressing ‘u contains PGraph ’, that is:

P : U→Prop := λu:U.u (λ((V,E), p).>)

It is easily checked that P (i V E p) and > are convertible, and sim-
ilarly that P out and ⊥ are convertible. Since the first clearly holds,
we thus reach ⊥. Therefore, out is not a set.

In order to finish our interpretation of sets in U, we need to lift
EQV and ELT to those elements of U which are a set, which we do
below.

Definition 4.2.11.

eqv : U→U→Prop :=

λu:U.λv:U.∃((V,E), p).∃((W,F), q).

u =U (i V E p) ∧ v =U (i W F q) ∧ ((V,E), p) ' ((W,F), q)

We will write u ∼= v for eqv u v.

elt : U→U→Prop :=

λu:U.λv:U.∃((V,E), p).∃((W,F), q).

u =U (i V E p) ∧ v =U (i W F q) ∧ ((V,E), p) ∈ ((W,F), q)

We will write u ∃v for elt u v.

44 4 Encoding Naive Set Theory in λU and λU−

The lifted ∼= inhabits most of the properties of ': it is a partial
equivalence relation that is reflexive exactly on the sets, and it it obeys
the substitution property for ∃.

Proposition 4.2.12. ∼= is a partial equivalence relation on U, which
is reflexive exactly on the sets.

Proof. Proposition 4.2.4 tells us that ' is an equivalence relation. From
this, the reflexivity on sets and symmetry of ∼= directly follows. The
transitivity easily follows by additionally using the injectivity from
lemma 4.2.7.

Furthermore, it is easily seen from the definition of ∼= that it u ∼= v
implies that u and v are both sets. Thus, in particular, ∼= cannot be
reflexive on elements which are not sets.

Lemma 4.2.13. If u ∼= u′, v ∼= v′ and u ∃v, then u′ ∃v′.

Proof. Directly follows from lemma 4.2.5 and the injectivity in lemma
4.2.7.

So, we have finished our embedding of pointed graphs in U, and thus
have an interpretation of sets, through pointed graphs, as the things
we called sets in U. Since U : Type, we can use U to form new pointed
graphs, and then use i to turn these pointed graphs back into sets in
U. We will use this to demonstrate we can perform comprehension on
our sets in U.

By comprehension, we usually mean that for every predicate Q on
sets we can form the set consisting of exactly those sets x for which
Qx holds. However, sets are only determined by terms of type U up
to ∼=. Therefore, we will only look at predicates P : U→Prop which are
compatible; that is, predicates P : U→Prop such that, if P u holds and
u ∼= v, then also Qv holds.

Definition 4.2.14.

compat : (U→Prop)→Prop :=

λP :(U→Prop).∀u:U.∀v:U.(P u)→ (u ∼= v)→ (P v)

We will call P : U→Prop compatible iff compat P holds.

One can easily check, with the help of lemma 4.2.13, that the pre-
dicate λu:U.ϕ is compatible if the formula ϕ is built by only using:

• The binary relations u ∼= v and u ∃v;

4.2 Interpretation in λU 45

• The logical connectives ⊥,>,¬,∧,∨,→;

• The quantifications ∀u:U.(set u)→ ψ and ∃u : U.(set u) ∧ ψ.

We now turn towards the construction that we will use to perform
comprehension on the sets in U. To this end, we first observe that we
have a ‘universal graph’ which contains bisimilar copies of all graphs.

Proposition 4.2.15. For every graph ((V,E), p) we have:

((V,E), p) ' ((U, elt δ), (i V E p))

Proof. It is easily checked that the relation

R : V→U→Prop := λv:V.λu:U.(i V E v) ∼= u

is a bisimulation from ((V,E), p) to ((U, elt δ), (i V E p)).

Now, let P : U→Prop be a predicate. We extend this universal
graph by connecting something which is not a set, e.g. out , to all sets
u : U for which P u holds. If we call the new edge-relation FOLD P ,
this leads to a pointed graph ((U,FOLD P), out), which is a picture of
the set we are looking for. This is formalized below.

Definition 4.2.16.

FOLD : (U→Prop)→U→U→Prop := λP :(U→Prop).λu:U.λv:U.

elt δ u v ∨ ((u =U out) ∧ (set v) ∧ (P v))

Observe that we only added edges starting from out , which is not
a set. Therefore, for sets u : U, the pointed graph ((U,FOLD P), u)

should not have changed ‘too much’ from ((U, elt δ), u). This is indeed
the case, as can be seen in the next lemma.

Lemma 4.2.17. For every predicate P : U→Prop and every u : U
with set u, ((U, elt δ), u) ' ((U,FOLD P), u).

Proof. We define the relation R as Leibniz equality on U restricted to
sets, i.e.:

R : U→U→Prop := λv:U.λw:U.(set v) ∧ v =U w

Since out is not a set by lemma 4.2.10, it is easily checked that R

is a bisimulation from ((U, elt δ), u) to ((U,FOLD P), u).

46 4 Encoding Naive Set Theory in λU and λU−

As seen above, ((U,FOLD P), out) is a picture of the set we are
looking for. Therefore, we use i to pull this pointed graph back into a
set in U.

Definition 4.2.18.

fold : (U→Prop)→U := λP :(U→Prop).i U (FOLD P) out

We will prove that fold P is indeed the set we are looking for by
proving introduction and elimination rules for it. Observe that we only
need P to be compatible for the elimination rule; as can be seen below,
it is not necessary for the introduction rule.

Proposition 4.2.19 (Introduction rule for fold). Let P : U→Prop
be a predicate. If u : U is a set such that P u holds, then u ∃fold P .

Proof. Since u is a set, there exists a pointed graph ((V,E), p) such
that u =U (i V E p). Therefore, from proposition 4.2.15 and lemma
4.2.17 we see:

((V,E), p) ' ((U, elt δ), u) ' ((U,FOLD P), u)

Since, by hypothesis, we have P u, FOLD P out u holds. Therefore,
we have:

u =U (i V E p) ∃(i U (FOLD P) out) ≡ fold P

Proposition 4.2.20 (Elimination rule for fold). Let P : U→Prop
be a compatible predicate. If u ∃(fold P), then P u holds.

Proof. Since u ∃(fold P), we know that there exist pointed graphs
((V,E), p), ((X,G), r) such that u =U (i V E P), (fold P) =U (i X Gr)
and ((V,E), p) ∈ ((X,G), r).

By lemma 4.2.7, we see that ((U,FOLD P), out) ' ((X,G), r).
Therefore, by lemma 4.2.5 we have ((V,E), p) ∈ ((U,FOLD P), out).
So, by definition of ∈, there exists a v : U such that ((V,E), p) '
((U,FOLD P), v) and FOLD P out v holds. Since v ∃out would imply
that out is a set, which it is not by lemma 4.2.10, we therefore see from
the definition of FOLD that set v and P v hold.

So, let ((W,F), q) be a pointed graph such that v =U (i W F q).
From proposition 4.2.15 and lemma 4.2.17 we now see:

((W,F), q) ' ((U, elt δ), v) ' ((U,FOLD P), v) ' ((V,E), p)

Therefore, v ∼= u. Since P is compatible we thus find that P u holds.

4.3 Interpretation in λU− 47

From this, we can easily find a contradiction in λU , by interpreting
Russell’s paradox.

Theorem 4.2.21. λU is inconsistent.

Proof. Let Ω : U := fold (λu:U.¬(u ∃u)). From proposition 4.2.19 we
find a proof p : ¬(Ω ∃Ω) → (Ω ∃Ω) and from proposition 4.2.20 we
find a proof q : (Ω ∃Ω)→ ¬(Ω ∃Ω).

Now: (λζ:Ω ∃Ω.q ζ ζ) (p (λζ:Ω ∃Ω.q ζ ζ)) : ⊥.

4.3 Interpretation in λU−

The interpretation of set theory in λU as given above cannot be trans-
ferred to λU− without any changes, since we use the (Kind ,Prop) quan-
tification on multiple occasions (e.g. to formalize proposition 4.2.4).

This can, however, be fixed by only looking at pointed graphs which
have U as the type of its vertices. This still allows us to define FOLD,
while removing the need for the (Kind ,Prop) quantification.

The definitions and proofs of the previous section can then largely
be translated into λU− by dropping all quantifications over types and
instantiating them with U. However, there are two exceptions, namely
lemma 4.2.7 and lemma 4.2.10. In the proofs of these two lemmas, we
explicitly used the definition of U. So, in these proofs the predicate P
should not drop the quantification over a type. It is easily checked that
this still gives a typable term in λU−.

Thus, we also find a contradiction in λU−.

Theorem 4.3.1. λU− is inconsistent.

4.4 Reduction Behavior

By formalizing the proof above in e.g. Coq, one can study the reduction
behavior of the paradox and try to construct a fixed point combinator
out of it. Since Coq uses a different type system (the Calculus of
Inductive Constructions), this is not directly possible; however, by a
slight modification to the source code we can turn the type system
into λU or λU−. This modification is discussed in appendix A, where
we also include a (heavily inlined and optimized) formalization of the
inconsistency proof in λU−.

A logical attempt to turn this proof into a fixed point combinator
would be to do the following:

48 4 Encoding Naive Set Theory in λU and λU−

• Change the Russell-predicate λu:U.¬(u ∃u) into P := λu:U.(u ∃

u)→ A.

• Change the paradox into:

λA:Type.λf :A→A.(λζ:Ω ∃Ω.f (q ζ ζ))(p (λζ:Ω ∃Ω.f (q ζ ζ)))

Now observe that:

(λζ:Ω ∃Ω.f (q ζ ζ)) (p (λζ:Ω ∃Ω.f (q ζ ζ)))

→β f (q (p (λζ:Ω ∃Ω.f (q ζ ζ))) (p (λζ:Ω ∃Ω.f (q ζ ζ))))

Thus, this would give a fixed point combinator if q (pM) =β M
for all proofs M : (u ∃u) → A. Since p is an introduction rule and
q is an elimination rule for FOLD, one would expect this to happen.
Unfortunately, this is not the case.

The main reason why q (pM) 6=β M is most easily illustrated using
a simple example. Let (E, p) and (F, q) be two pointed graphs and let
a : (E, p) ' (F, q). In lemma 4.2.4, we proved that ' is an equivalence
relation; from this we find a proof EQV refl of the reflexivity of EQV
and a proof EQV trans of the transitivity of EQV .

Now, what happens if we attach a reflexivity proof to a; i.e. what
can we say about

b := EQV transE pE pF q (EQV reflE p) a?

Intuitively, we would like this to be β-equal to a. Unfortunately,
this is not the case. If the orginal bisimulation contained in a is A,
then this bisimulation changes into:

λv:V.λw:W.∃x:V.v =U x ∧Axw

While this bisimulation is logically equivalent to the original one, it is
not β-equal to it. In fact, the only thing that changes between the
terms a and b is the bisimulation, not the proofs that the bisimulation
is a bisimulation. Thus, b falls just short of being β-equal to a.

It is because of this problem that q (pM) 6=β M : the transitivity is
used in the compatibility of ∃, which is in turn used in q. Aside from
this compatibility rule, the term reduces properly.

Our next attempt tries to eliminate the compatibility from the
proof. We inline the definition of ELT E pE p in P by directly specify-
ing a witness of the ∃-quantifier. By studying the proof of proposition

4.4 Reduction Behavior 49

4.2.19, we find a good candidate: i E p. Thus, we change ELT in the
predicate P into:

Q := λE:U→U→Prop.λp:U.E p (i E p) ∧ EQV E pE (i E p)

This eliminates the compatibility from our elimination rule. How-
ever, we now obtain a different problem: we need to show that, if
i E p =U i F q and QF q hold, then QE p holds. First we remark
that we can strengthen lemma 4.2.7: in fact, i E p =U i F q implies
that ((U, E), p) =PGraph ((U, F), q). Unfortunately, even though it feels
counter-intuitive, this equality is not strong enough to prove that QE p
holds. The problem is that we can only apply this equality to predic-
ates defined on all of PGraph ; and since we always have that i X Gr is
of type U instead of of type X, we cannot define this general predicate.
Thus, this approach seems like it leads to a dead end.

It might very well be possible that some further inlining and op-
timization leads to a fixed point combinator; unfortunately, we cannot
give a decisive answer at the current time.

50

A
Coq Formalization

(* Formalization of Miquel’s paradox.

We follow the proof as outlined in the thesis, except

we consider the version in Lambda U-, as discussed in

section 3.3; that is, we only consider graphs over the

type U. *)

(* This formalization is in Lambda U-, and therefore some

modifications need to be made to the Coq source code.

It is (more than) enough to change the following line

in kernel/typeops.ml:

| (Type u1, Type u2) -> Type (sup u1 u2)

into:

| (Type u1, Type u2) -> Type u1

This changes the PTS-rule

(Type i, Type j, Type max(i,j))

into (Type i, Type j, Type i), which is strong enough

for our purpose. *)

(* The type U. *)

Definition U :=

(forall T: Type, (T -> T -> Prop) -> T -> Prop) -> Prop.

(* Definition of False *)

Definition False : Prop := forall P: Prop, P.

(* Definition of Leibniz-equality on U and proofs that it

is an equivalence relation *)

Definition leib_eq (u v: U) :=

51

52 A Coq Formalization

forall P: U -> Prop, P u -> P v.

Infix "==" :=

leib_eq (at level 70, no associativity) : type_scope.

Lemma leib_eq_refl : forall u : U, u == u.

unfold leib_eq. intros. exact H.

Defined.

Lemma leib_eq_sym : forall u v : U, u == v -> v == u.

intros. apply H. apply leib_eq_refl.

Defined.

Lemma leib_eq_trans : forall u v w : U,

u == v -> v == w -> u == w.

intros. apply H0. exact H.

Defined.

(* Notational shorthand for graphs *)

Definition Graph := (U -> U -> Prop).

(* Equivalence (bisimulation) on pointed graphs *)

Definition EQV :=

fun (E: Graph) (p: U) (F: Graph) (q: U) =>

forall Q: Prop,

(forall R : U -> U -> Prop,(R p q) ->

(forall Q1: Prop, forall v a w : U,(E v a) -> (R v w)

-> (forall b : U,(R a b) -> (F w b) -> Q1) -> Q1)

-> (forall Q1: Prop, forall w b v : U,(F w b) -> (R v w)

-> (forall a : U,(R a b) -> (E v a) -> Q1) -> Q1)

-> Q) -> Q.

(* Proofs that EQV is an equivalence relation *)

Lemma EQV_refl : forall (E: Graph) (p: U), EQV E p E p.

unfold EQV. intros.

apply H with (fun v:U => fun w:U => v == w).

apply leib_eq_refl. intros. apply H2 with a.

apply leib_eq_refl. apply H1. exact H0. intros.

apply H2 with b. apply leib_eq_refl.

apply leib_eq_sym in H1. apply H1. exact H0.

Defined.

53

Lemma EQV_sym : forall (E: Graph) (p : U) (F: Graph)

(q : U), (EQV E p F q) -> (EQV F q E p).

unfold EQV. intros. apply H. intros.

apply H0 with (fun v w : U => R w v).

exact H1. exact H3. exact H2.

Defined.

Lemma EQV_trans :

forall (E: Graph) (p: U) (F: Graph) (q: U) (G: Graph)

(r: U), (EQV E p F q) -> (EQV F q G r) -> (EQV E p G r).

unfold EQV. intros. apply H. intro S. intros. apply H0.

intro T. intros.

apply H1 with (fun v x : U => forall P : Prop,

(forall w : U, (S v w) -> (T w x) -> P) -> P).

intros. apply H8 with q. exact H2. exact H5. intros.

apply H9. intros. apply H3 with v a w0. exact H8.

exact H11. intros. apply H6 with w0 b w. exact H14.

exact H12. intros. apply H10 with b0. intros.

apply H17 with b. exact H13. exact H15. exact H16.

intros. apply H9. intros. apply H7 with w b w0. exact H8.

exact H12. intros. apply H4 with w0 a v. exact H14.

exact H11. intros. apply H10 with a0. intros.

apply H17 with a. exact H15. exact H13. exact H16.

Defined.

(* Definition of the ELT (subgraph) relation *)

Definition ELT := fun (E : Graph) (p : U) (F: Graph)

(q : U) => forall Q: Prop,

(forall q’ : U, (F q q’) -> (EQV E p F q’) -> Q) -> Q.

(* EQV is compatible with respect to ELT *)

Lemma EQV_compat : forall (E : Graph) (p : U) (F : Graph)

(q : U) (G : Graph) (r : U) (H : Graph) (s : U),

(EQV E p F q) -> (EQV G r H s) -> (ELT F q G r)

-> (ELT E p H s).

unfold ELT. intros. apply H2. intro r’. intros. apply H1.

intros. apply H7 with r r’ s. exact H4. exact H6.

intro s’. intros. apply H3 with s’. exact H10.

54 A Coq Formalization

assert (EQV G r’ H s’). unfold EQV. intros.

apply H11 with R. exact H9. exact H7. exact H8.

assert (EQV F q H s’). apply EQV_trans with G r’.

exact H5. exact H11. apply EQV_trans with F q.

exact H0. exact H12.

Defined.

(* Definition of i: we will write i2 for the version from

the thesis and for the sake of clarity we will write i

for the version curried with U. *)

Definition i2 (T: Type) (E: T -> T -> Prop) (p: T)

(u: forall S: Type, (S -> S -> Prop) -> S -> Prop) :=

u T E p.

Definition i (E: Graph) (p: U) := i2 U E p.

(* For the injectivity of i, we need the general

definition of EQV. *)

Definition EQVg :=

fun (S: Type) (E: S -> S -> Prop) (p: S) (T: Type)

(F: T -> T -> Prop) (q: T) => forall Q: Prop,

(forall R : S -> T -> Prop,(R p q) ->

(forall Q1: Prop, forall v a: S, forall w: T,

(E v a) -> (R v w)

-> (forall b : T,(R a b) -> (F w b) -> Q1) -> Q1)

-> (forall Q1: Prop, forall w b: T, forall v: S,

(F w b) -> (R v w)

-> (forall a : S,(R a b) -> (E v a) -> Q1) -> Q1)

-> Q) -> Q.

(* The critical predicate in the proof that i is

injective, including introduction and elimination

rules. *)

Definition contains_singleton (E: Graph) (p: U) (u: U) :=

u (fun (T: Type) (F: T -> T -> Prop) (q: T) =>

EQVg U E p T F q).

Lemma contains_singleton_intro: forall (E: Graph) (p: U)

(F: Graph) (q :U),

55

EQV E p F q -> contains_singleton E p (i F q).

intros. unfold contains_singleton. unfold i. exact H.

Defined.

Lemma contains_singleton_elim: forall (E: Graph) (p: U)

(F: Graph) (q :U),

contains_singleton E p (i F q) -> EQV E p F q.

intros. unfold contains_singleton in H. unfold i in H.

exact H.

Defined.

(* Proof of the injectivity of i. *)

Lemma iinj: forall (E: Graph) (p : U) (F : Graph) (q : U),

(i E p) == (i F q) -> (EQV E p F q).

intros. apply contains_singleton_elim. apply H.

apply contains_singleton_intro. apply EQV_refl.

Defined.

(* We define when an element of U is a set (i.e. when it

is in the image of i). *)

Definition set (u : U) :=

forall Q: Prop, (forall (E : Graph) (p : U),

(u == (i E p)) -> Q) -> Q.

(* We state the following trivial lemma, to avoid having

to prove it over and over. *)

Lemma i_set : forall (E : Graph) (p : U), set (i E p).

unfold set. intros. apply H with E p. apply leib_eq_refl.

Defined.

(* Definition of out. *)

Definition out : U := fun _ => False.

(* Definition of True. *)

Definition True := forall P: Prop, P -> P.

Lemma True_intro: True.

unfold True. intros. exact H.

Defined.

56 A Coq Formalization

(* The critical predicate in the proof that out is not a

set, including an introduction rule. *)

Definition contains_universe (u: U): Prop :=

u (fun _ _ _ => True).

Lemma contains_universe_intro: forall (E: Graph) (p: U),

contains_universe (i E p).

intros. unfold contains_universe. unfold i. unfold i2.

apply True_intro.

Defined.

Lemma out_not_set : (set out) -> False.

unfold set. intros. apply H. intros.

assert (contains_universe out). apply leib_eq_sym in H0.

apply H0. apply contains_universe_intro. apply H1.

Defined.

(* We skip the definition of eqv and the lemmas regarding

it, since we will inline eqv to simplify our proofs.

By inlining eqv, we can directly pass the witnesses of

elements u of U being a set (i.e. the E and p such that

u = i E p) instead of having to redetermine them every

time. The main advantage of this is that we can isolate

the usage of iinj as much as possible, thus making the

reduction easier to trace (since iinj is the only proof

whose reduction we cannot properly trace in CIC, and it

is therefore the main term responsible for the

non-normalisation of the term). *)

(* We do, however, need elt for our universal graph below.

We directly give the dual version. *)

Definition eltd (u v: U) :=

forall Q: Prop, (forall (E: Graph) (p: U) (F: Graph)

(q: U),

u == (i E p) -> v == (i F q) -> ELT F q E p -> Q) -> Q.

(* The next lemma proves the existence of an ’universal

graph’ *)

Lemma univ_graph : forall (E : Graph) (p : U),

(EQV E p eltd (i E p)).

57

unfold EQV. intros.

apply H with

(fun v u: U => forall P : Prop, (forall (F: Graph)

(q: U), u == i F q -> EQV E v F q -> P) -> P).

intros. apply H0 with E p. apply leib_eq_refl.

apply EQV_refl. intros. apply H1. intros. apply H4.

intros. apply H6 with v a q. exact H0. exact H5.

intros. apply H2 with (i F b). intros. apply H10 with F b.

apply leib_eq_refl. unfold EQV. intros. apply H11 with R.

exact H8. exact H6. exact H7. unfold eltd. intros.

apply H10 with F q F b. exact H3. apply leib_eq_refl.

unfold ELT. intros. apply H11 with b. exact H9.

apply EQV_refl. intros. apply H1. intros. apply H4.

intros. apply H0. intros. assert (ELT F0 q0 F q).

apply EQV_compat with F0 q0 E0 p0. apply EQV_refl.

apply iinj. apply leib_eq_trans with w. apply leib_eq_sym.

exact H8. exact H3. exact H10. apply H11. intros.

apply H7 with q q’ v. exact H12. exact H5. intros.

apply H2 with a. intros. apply H16 with F0 q0. exact H9.

apply EQV_trans with F q’. unfold EQV. intros.

apply H17 with R. exact H14. exact H6. exact H7.

apply EQV_sym. exact H13. exact H15.

Defined.

(* For the sake of optimalization, we will only define

FOLD for our ’Russell-style’ predicate. *)

Parameter A: Prop.

Definition P (E: Graph) (p: U) := (ELT E p E p) -> A.

Definition FOLD (u v : U) := forall Q: Prop,

(eltd u v -> Q) -> (forall (E: Graph) (p: U),

u == out -> v == (i E p) -> (P E p) -> Q) -> Q.

(* Lemma 3.2.17 *)

Lemma fold_small : forall (u : U), (set u)

-> (EQV eltd u FOLD u).

unfold EQV. intros.

apply H0 with

(fun v w : U => forall Q1: Prop,

((set v) -> (v == w) -> Q1) -> Q1).

58 A Coq Formalization

intros. apply H1. exact H. apply leib_eq_refl. intros.

apply H1. intros. apply H2. intros. apply H3 with a.

intros. apply H9. apply leib_eq_sym in H5. apply H5.

apply i_set. apply leib_eq_refl. unfold FOLD. intros.

apply H9. apply H8. exact H1. intros. apply H1. intros.

apply H2. intros. apply H3 with b. intros. apply H4.

intros. apply H7. apply leib_eq_sym in H9. apply H9.

apply i_set. apply leib_eq_refl. apply leib_eq_sym in H6.

apply H6. exact H4. intros. apply H2. intros.

apply out_not_set. apply H4. apply H8. exact H7.

Defined.

(* The introduction rule for fold *)

Lemma fold_intro : forall (E: Graph) (p: U), (P E p)

-> (ELT E p (FOLD) out).

intros. unfold ELT. intros. apply H0 with (i E p).

unfold FOLD. intros. apply H2 with E p.

apply leib_eq_refl. apply leib_eq_refl. exact H.

apply EQV_trans with eltd (i E p). apply univ_graph.

apply fold_small. apply i_set.

Defined.

(* The compatibility of our predicate, necessary for the

elimination rule *)

Lemma P_compat : forall (E: Graph) (p: U) (F: Graph)

(q: U), P E p -> EQV E p F q -> P F q.

unfold P. intros. apply H. apply EQV_compat with F q F q.

exact H0. apply EQV_sym. exact H0. exact H1.

Defined.

(* The elimination rule for fold *)

Lemma fold_elim : forall (E: Graph) (p: U),

(ELT E p (FOLD) out) -> (P E p).

unfold P. intros. apply H. intro v. intros. apply H1.

intro. apply H3. intros. apply out_not_set.

apply leib_eq_sym in H4. apply H4. apply i_set.

intros. apply H2. intros. apply P_compat with E0 p0 E p.

exact H5. apply leib_eq_sym in H4.

apply EQV_trans with eltd v. apply H4. apply univ_graph.

apply EQV_trans with (FOLD) v. apply fold_small.

59

apply H4. apply i_set. apply EQV_sym. exact H2. exact H0.

Defined.

(* Our terms p and q *)

Lemma p : P FOLD out -> ELT FOLD out FOLD out.

intro. apply fold_intro. exact H.

Defined.

Lemma q : ELT FOLD out FOLD out -> P FOLD out.

intro. apply fold_elim. exact H.

Defined.

(* Our attempt at a fixed point combinator *)

Parameter f: A -> A.

Definition Fix: A :=

(fun z : (ELT FOLD out FOLD out) => f (q z z))

(p (fun z : (ELT FOLD out FOLD out) => f (q z z))).

60

Bibliography

P. Aczel. Non-Well-Founded Sets, volume 14 of CSLI Lecture Notes.
Center for the Study of Language and Information, Stanford, 1988.

H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics,
volume 103 of Studies in Logic and the Foundations of Mathematics.
North Holland, Amsterdam, 1984.

H.P. Barendregt and E. Barendsen. Introduction to lambda calculus,
1998.

G. Barthe and T. Coquand. Remarks on the equational theory of non-
normalizing pure type systems. Journal of Functional Programming,
16(2):137–155, 2006.

J. Barwise and L.S. Moss. Vicious circles, volume 60 of CSLI Lecture
Notes. Center for the Study of Language and Information, Stanford,
1996.

C. Burali-Forti. Una questione sui numeri transfiniti. Rendiconti del
Circolo Matematico di Palermo, 11:154–164, 1897a.

C. Burali-Forti. Sulle classi ben ordinate. Rendiconti del Circolo
Matematico di Palermo, 11:260, 1897b.

G. Cantor. Beitrage zur Begründung der transfiniten Mengenlehre, II.
Mathematische Annalen, 49:207–246, 1897.

P.J. Cohen. Set Theory and The Continuum Hypothesis. W. A. Ben-
jamin, New York, 1966.

I.M. Copi. The Burali-Forti Paradox. Philosophy of Science, 25(4):
281–286, October 1958.

J.H. Geuvers and M.J. Nederhof. A modular proof of strong norm-
alisation for the calculus of constructions. Journal of Functional
Programming, 1(2):155–189, 1991.

61

62 Bibliography

K.G. Hagström. Note sur l’antinomie Burali-Forti. Arkiv for Matem-
atik, Astronomi och Fysik, 10:1–4, 1914.

A.J.C. Hurkens. A Simplification of Girard’s Paradox. In Second In-
ternational Conference on Typed Lambda Calculi and Applications,
TLCA’95, volume 902 of Lecture Notes in Computer Science, pages
266–278. Springer Berlin / Heidelberg, 1995.

A.R. Meyer and M.B. Reinhold. “Type” is not a type. Proceedings
POPL’86, pages 287–295, 1986.

A. Miquel. Le Calcul des Constructions Implicite: Syntaxe et Se-
mantique. PhD thesis, Université Paris 7, 2001.

F. van Raamsdonk. Logical verification, course notes, 2008.

W. Veldman. Axiomatische verzamelingenleer.

