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Abstract. A set A ⊆ ω is cototal if it is enumeration reducible to its comple-
ment, A. The skip of A is the uniform upper bound of the complements of all

sets enumeration reducible to A. These are closely connected: A has cototal

degree if and only if it is enumeration reducible to its skip. We study cototality
and related properties, using the skip operator as a tool in our investigation.

We give many examples of classes of enumeration degrees that either guarantee
or prohibit cototality. We also study the skip for its own sake, noting that it
has many of the nice properties of the Turing jump, even though the skip of A

is not always above A (i.e., not all degrees are cototal). In fact, there is a set
that is its own double skip.

1. Introduction

Enumeration reducibility was defined by Friedberg and Rogers in the late 1950’s
to capture a notion of reducibility between sets in which only positive information
about membership in the set is either used or computed. This notion turns out to
be as natural as Turing reducibility in a number of settings, e.g., in group theory
and computable model theory.

For an arbitrary set A ⊆ ω, the enumeration degree of A and the enumeration
degree of A, the complement of A, need not be comparable. By requiring that they
are comparable, we can isolate two interesting subclasses of the enumeration degrees.
The first was introduced at the same time as the enumeration degrees themselves.
Call a set A ⊆ ω total if A ≤e A, and call an enumeration degree total if it contains
a total set. Note that A is total if and only if A ≡e A⊕A. Since every set of the
form A ⊕ A is total, the total degrees are exactly the degrees of sets A ⊕ A for
some A ⊆ ω. In fact, the map A 7→ A⊕A induces an order-preserving isomorphism
between the Turing degrees and the total enumeration degrees. The name “total”
is due to the fact that an enumeration degree is total if and only if it contains the
graph of a total function. In particular, if A is a total set, then dege(A) contains
the graph of the characteristic function of A.
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It is important to note that total degrees always contain nontotal sets as well. For
example, all c.e. sets have total degree because they are all enumeration equivalent
to the empty set, but only computable c.e. sets are total.

1.1. Cototality. What happens if we reverse the relationship between A and A?
Call a set A ⊆ ω cototal if A ≤e A, and call an enumeration degree cototal if it
contains a cototal set. While we are the first to isolate this property under this
name, both the property and the name have appeared in the literature. The name
was essentially first used, as far as we are aware, in an abstract of A.V. Pankratov
from 2000 [16]. Pankratov used “kototal~noe” (Russian for “cototal”) to refer to
what we call the graph-cototal degrees, which turns out to be a proper subclass of
the cototal degrees: For any total function f : ω → ω, let Gf = {〈n,m〉 : f(n) = m}
be the graph of f . It is easy to see that Gf ≤e Gf , so Gf is a cototal set. If an

enumeration degree contains a set of the form Gf , then we call it graph-cototal.
The graph-cototal sets and degrees were further studied by Solon, Pankratov’s

advisor. In [21], he used “co-total” to refer to what we call “graph-cototal”. However,
in the Russian version [20] of the same paper, Solon used “ko-total~noe” for a
different property: Call a degree a weakly cototal if it contains a set A such that A
has total enumeration degree. It is clear that every cototal degree is weakly cototal,
since if A ≤e A, then A is a total set. So we have

graph-cototal =⇒ cototal =⇒ weakly cototal.

We show that these three properties are distinct. The harder separation is given
in Section 5, where we use an infinite-injury argument relative to 0′ to construct a
cototal degree that is not graph-cototal. In Section 4, we give examples of weakly
cototal degrees that are not cototal, as well as enumeration degrees that are not
weakly cototal. Of these properties, we believe that there is a strong case that
cototal is the most fundamental.

Our study of cototality was motivated by two examples of cototal sets that were
pointed out to us by Jeandel [9]. He showed that the set of non-identity words in
a finitely generated simple group is cototal (see also Thomas and Williams [23]).
Jeandel also gave an example from symbolic dynamics: The set of words that appear
in a minimal subshift is cototal. This is particularly interesting because the Turing
degrees of elements of a minimal subshift are exactly the degrees that enumerate the
set of words that appear in the subshift, so understanding the enumeration degree
of this set is closely related to understanding the Turing degree spectrum of the
subshift.

In Section 2, we explain Jeandel’s examples in more detail, and we give several
other examples of cototal sets and degrees. We show that every Σ0

2-set is cototal,
in fact, graph-cototal. We show that the complement of a maximal independent
subset of a computable graph is cototal, and that every cototal degree contains the
complement of a maximal independent subset of ω<ω. Ethan McCarthy proved that
the same is true of complements of maximal antichains in ω<ω. We show that joins
of nontrivial K-pairs are cototal, and that the natural embedding of the continuous
degrees into the enumeration degrees maps into the cototal degrees. Finally, we
note that Harris [8] proved that sets with a good approximation have cototal degree.

The earliest reference to a cototality notion seems to be in Case’s dissertation [3,
p. 14] from 1969; he wrote “The author does not know if there are sets A such
that A lies in a total partial degree and A lies in a non-total partial degree, but



COTOTALITY AND THE SKIP 3

he conjectures that there are no such sets.” In our language, Case is conjecturing
that if A has weakly cototal degree, then it has total degree. The same question
also appears in the journal version [4, p. 426]. Gutteridge [7, Chapter II] disproved
this conjecture by constructing a quasiminimal graph-cototal degree. Recall that
an enumeration degree a is quasiminimal if it is nonzero and the only total degree
below a is 0e; in particular, quasiminimal degrees are nontotal. At least two
other independent constructions of nontotal cototal degrees appear in the literature:
Sanchis [18], apparently unaware of Case’s conjecture, gave an explicit construction
of a cototal set that is not total. Aware of Case’s conjecture but not Gutteridge’s
example, Sorbi [22] constructed a quasiminimal cototal degree. Neither of these
constructions explicitly produce a graph-cototal degree.

In the abstract mentioned above, Pankratov [16] claimed that there is a graph-
cototal Σ0

2-enumeration degree that forms a minimal pair with every incomplete
Π0

1-enumeration degree.1 The graph-cototal degrees were studied more extensively
by Solon [20, 21].2 He proved that every total enumeration degree above K contains
the graph Gf of a total function f : ω → ω such that Gf is quasiminimal. He
also showed that for every total enumeration degree b, there is a graph-cototal
enumeration degree a that is quasiminimal over b. Finally, Solon proved that for
every total enumeration degree b above K, there is a graph-cototal quasiminimal
enumeration degree a such that a′ = b (see below for more about the enumeration
jump). This strengthens a result of McEvoy [14], who proved that the quasiminimal
enumeration degrees have all possible enumeration jumps. Note that all three of
Solon’s results can also be seen as generalizations of Gutteridge’s construction of a
quasiminimal graph-cototal degree.

1.2. The skip. Cototality is closely related to the other main subject of this paper:
the skip operator. Let {Γe}e∈ω be an effective list of all enumeration operators
and let KA =

⊕
e∈ω Γe(A). Note that KA ≡e A. We define the skip of A to be

A♦ = KA. It is easy to see that skip is degree invariant, so it induces an operator on
enumeration degrees. We use a♦ to denote the skip of a. Note that the complements
of elements of dege(A) are enumeration reducible to A♦; indeed, they are columns
of A♦. In other words, dege(A

♦) is the maximum possible degree of the complement
of an element of dege(A). One consequence of this characterization is the connection
between the skip and cototality:

Proposition 1.1. A set A ⊆ ω has cototal degree if and only if A ≤e A♦.

Proof. If A has cototal degree, then there is B ≡e A such that B ≤e B. So
A ≡e B ≤e B ≤e A♦. For the other direction, assume that A ≤e A♦. So
KA ≡e A ≤e A♦ = KA, hence A has cototal degree. �

This connection is quite useful; the separations we prove in Section 4 rely on our
study of the skip operator in Section 3.

In some ways, the skip is analogous to the jump operator in the Turing degrees.
For example, a standard diagonalization argument shows that A♦ �e A. In Propo-
sition 3.1, we show that A ≤e B if and only if A♦ ≤1 B

♦, mirroring the jump in

1This result does not appear to be published and we do not know the proof that Pankratov had in

mind, but note that graph-cototality is free because every Σ0
2-enumeration degree is graph-cototal.

2We note here a slight confusion in Solon’s papers between cototal sets and cototal degrees,
which does not, however, affect his main results.



4 ANDREWS, GANCHEV, KUYPER, LEMPP, MILLER, A. SOSKOVA, AND M. SOSKOVA

the Turing degrees. Finally, in Theorem 3.3, we prove a skip inversion theorem
analogous to Friedberg jump inversion: If S ≥e K, then there is a set A such that
A♦ ≡e S.

The biggest difference between the skip and the Turing jump is that it is not
always the case that A ≤e A♦ (because not all enumeration degrees are cototal). In
fact, as we will see in Section 3.2.3, there is a skip 2-cycle, i.e., a set A ⊆ ω such that
A = A♦♦. If we modify the skip to ensure that it is increasing in the enumeration
degrees, then we recover the definition of the enumeration jump as introduced by
Cooper3 [5].

The enumeration jump of a set A ⊆ ω is Je(A) = KA ⊕KA ≡e A ⊕ A♦. So A
has cototal degree if and only if Je(A) ≡e A♦. Of course, the enumeration jump is
degree invariant and induces an operator on the enumeration degrees; we use a′ for
the jump of a. The definition of the enumeration jump ensures that A <e Je(A),
as we expect from a jump. On the other hand, we lose two of the properties that
the skip shares with the Turing jump. The enumeration jump is always total, so it
cannot possibly map onto all enumeration degrees above 0′e. However, by Friedberg
jump inversion, it does map onto the total degrees above 0′e. We will also see, in
Proposition 3.23, that Je(A) ≤1 Je(B) does not necessarily imply that A ≤e B. So
neither the skip nor the enumeration jump is the perfect analogue of the Turing
jump; we believe that both have a role in the study of the enumeration degrees.

2. Examples of cototal sets and degrees

2.1. Total degrees. For any set A ⊆ ω, the set A⊕A is clearly cototal. Therefore,
every total degree is cototal.

2.2. The complement of the graph of a total function. As we have noted,
if f : ω → ω is total, then Gf , the complement of the graph of f , is a cototal set.

This is because 〈n,m〉 ∈ Gf if and only if there is m′ 6= m such that 〈n,m′〉 ∈ Gf .
The class of graph-cototal enumeration degrees turns out to lie strictly between the
total degrees and the cototal degrees. The hard part will be showing that there
is a cototal degree that is not graph-cototal. We will do that in Section 5. To
see that every total degree is graph-cototal, recall that each total degree contains
the graph of the characteristic function χA of some total set A; it also contains
the complement of the graph of A. We already saw that GχA ≤e GχA . But now

since 〈n,m〉 ∈ GχA if and only if m ∈ {0, 1} and 〈n, 1 −m〉 ∈ GχA , we have that

GχA ≡e GχA . The next result implies that there are nontotal graph-cototal degrees.

Proposition 2.1. Every enumeration degree a ≤ 0′e is graph-cototal.

Proof. The enumeration degrees below 0′e consist entirely of Σ0
2-sets. So, fix an

enumeration degree a ≤ 0′e and a Σ0
2-set A ∈ a. We must show that there is a set

G ≡e A that is the complement of the graph G of a total function. We can think
of G as an infinite table such that each column contains all but one element.

Fix a Σ0
2-approximation {As}s<ω to the set A. This is a uniformly computable

sequence of finite sets such that a ∈ A if and only if a ∈ As for all but finitely

3Cooper [5] thanks his student McEvoy for helping provide the correct definition of the
enumeration jump operator. Sorbi recalled (in private communication) that Cooper’s original
“incorrect” definition was actually our definition of the skip operator.
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many s. So, to every a ∈ A we can associate the first stage sa such that a ∈ As for
every s ≥ sa. Consider the set

U = {〈a, s〉 : s 6= sa} = {〈a, s〉 : a ∈ As−1 ∨ (∃t > s)[a /∈ At]}.

Note that U is a c.e. table such that the a-th column of U contains all natural
numbers if a /∈ A and all but one natural number if a ∈ A. We combine U and A to
define the set G:

〈a,m〉 ∈ G if and only if m = 0 & a ∈ A ∨m > 0 & 〈a,m− 1〉 ∈ U.

The set G is clearly in the degree a and is the complement of the graph of the total
function g : ω → ω such that g(a) = sa + 1 if a ∈ A and g(a) = 0 if a /∈ A. �

It is worth pointing out that the argument above cannot be extended to further
levels of the arithmetical hierarchy. In the next section, we will show that there are
Π0

2-sets that do not even have cototal enumeration degree. On the other hand, it is
easy to see that every Π0

2-set has weakly cototal degree. This is because every set A
is enumeration equivalent to A⊕K, where K is the halting set. So, if A is Π0

2 then
A⊕K = A⊕K ≡e K ∈ 0′e. As for higher levels of the arithmetical hierarchy, we
will see in Section 4 that there are ∆0

3-sets that are not even weakly cototal.
Let G be the complement of the graph G of a total function. Notice that the

reduction Γ witnessing that G ≤e G described above has the following interesting
feature: If x ∈ G, then there is a unique axiom in Γ that enumerates x into Γ(G).
We say that G reduces to G via a unique axiom reduction. We will next see that
this property characterizes the graph-cototal enumeration degrees among all cototal
enumeration degrees.

Proposition 2.2 (Unique Axiom Characterization). An enumeration degree a is
graph-cototal if and only if it contains a cototal set A that reduces to A via a unique
axiom reduction.

Proof. We have already seen that graph-cototal degrees have this property. For the
reverse direction, let a be an enumeration degree and let A ∈ a be a cototal set
that reduces to A via a unique axiom reduction Γ. We will, in this case as well,
construct an infinite table G, the first row of which will contain only elements in
columns corresponding to members of A. For the remaining rows, we will use the
c.e. set Γ. Note that if 〈a,D〉 ∈ Γ and a /∈ A, then D must contain an element of A,
and if a ∈ A, then there is a unique axiom 〈a,D〉 such that D ∩A = ∅. Intuitively,
the idea is to assign the axioms of Γ to the remaining undecided elements in each
column and enumerate into G an element in the a-th column unless it corresponds
to the unique correct axiom for a. We formalize this idea below.

Fix a computable function s that lists Γ without repetitions. Without loss of
generality, we may assume that Γ is infinite, as a finite unique axiom reduction can
enumerate only a finite set and we already know that 0e is graph-cototal. We define
the set G as follows:

〈a,m〉 ∈ G if and only if [m = 0 & a ∈ A]

or
[
m > 0 &

[
s(m− 1) is not an axiom for a

or (s(m− 1) = 〈a,D〉 & D ∩A 6= ∅)
]]
.
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The set G is clearly in the degree a and is the complement of the graph of the total
function g : ω → ω such that g(a) = d+ 1, where d codes the unique correct axiom
for a if a ∈ A, and g(a) = 0 if a /∈ A. �

We will therefore be interested in finding examples of cototal enumeration degrees
that do not satisfy the Unique Axiom Characterization, as we would like to separate
the cototal degrees from the graph-cototal degrees. The next example, which comes
from graph theory, is motivated by this desire.

2.3. Complements of maximal independent sets. Recall that an (undirected)
graph is a pair G = (V,E), where V is a set of vertices and E is a set of unordered
pairs of vertices, called the edge relation.

Definition 2.3. An independent set for a graph G = (V,E) is a set of vertices
S ⊆ V such that no pair of distinct vertices in S is connected by an edge. An
independent set is maximal if it has no proper independent superset.

In other words, an independent set S is maximal if and only if every vertex
v ∈ V is either in S or is connected by an edge to an element of S. The maximal
independent sets for the graph of the cube are illustrated in the figure below, courtesy
of David Eppstein and Wikipedia.

Figure 1. Maximal independent sets for the cube

Consider an infinite graph G = (ω,E) with a computable edge relation. For
example, we can think of the tree ω<ω as a computable graph on the natural
numbers by fixing an effective coding of the finite sequences of natural numbers and
putting an edge between any non-root node and its immediate predecessor. If S is
a maximal independent set for G, then S can enumerate its complement:

S = {v : (∃u ∈ S)[{u, v} ∈ E]}.
It follows that complements of maximal independent sets in computable graphs
on ω are cototal. Our main reason for considering this example is that, in general,
this reduction does not have the unique axiom property. This is well illustrated by
Figure 1: the maximal independent set in the middle of the first row, for example,
would enumerate each element of its complement with three distinct correct axioms.
Hence we might hope that complements of maximal independent sets allow us to
move beyond the graph-cototal degrees. They do, and in fact, they are universal for
the cototal enumeration degrees.
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Theorem 2.4. Every cototal degree contains the complement of a maximal inde-
pendent set for ω<ω.

Proof. Fix a cototal set A and let A = Γ(A). We will build a set G ⊆ ω<ω which
will be the complement of a maximal independent set for ω<ω. In this case, we will
again assume that A is not c.e. and so Γ is an infinite c.e. set, as there are easy
examples of computable maximal independent sets, e.g., the set of all odd-length
strings in ω<ω. So let g be a computable listing of Γ without repetitions. We will
further assume that no axiom in Γ is of the form 〈a, ∅〉. We can easily replace Γ with
an operator that fits this description by replacing every such axiom by 〈a, {b0}〉,
where b0 is some fixed member of A. We will also fix a number a0 ∈ A.

To every node σ ∈ ω<ω other than the root 〈〉, we will computably assign a finite
set Dσ. The set G will then be defined as

G = {σ : Dσ ∩A 6= ∅} ∪ {〈〉}.

The assignment is defined by induction:

1. If σ = n is a length-1 string then Dσ = {n}.
2. If σ = τn. Then we have two cases:

(a) If g(n) is not an axiom for any member of Dτ then we let Dσ = {a0}.
(b) If g(n) = 〈a,D〉 is an axiom for a ∈ Dτ then we let Dσ = D.

From the definition, it follows that G ≤e A, and from part 1 in particular, that also
A ≤e G, as n ∈ G if and only if {n} ∩A 6= ∅ if and only if n ∈ A. It remains to be
shown that G is a maximal independent set.

Fix τ, σ ∈ ω<ω such that σ = τn. We must show that either σ ∈ G or τ ∈ G to
ensure that G is independent. If τ /∈ G then τ 6= 〈〉 and Dτ ⊆ A. If g(n) is not an
axiom for any element in Dτ , then Dσ = {a0} ⊆ A and hence σ ∈ G. Otherwise
g(n) = 〈a,Dσ〉 and a /∈ A. As A = Γ(A) it must be that Dσ * A and so Dσ ∩A 6= ∅,
hence σ ∈ G.

Finally, we must show that every τ ∈ G has a neighbor σ in G to ensure that G
is maximal. If τ = 〈〉, then σ can be chosen as any of its length-1 neighbors
corresponding to elements b ∈ A. Suppose that τ 6= 〈〉 and let a ∈ Dτ ∩ A. Then
a ∈ Γ(A) and hence there is an axiom 〈a,D〉 ∈ Γ such that D ⊆ A. Fix n such that
〈a,D〉 = g(n). We assign the set D to the string σ = τn; it follows that σ /∈ G. �

2.4. Complements of maximal antichains in ω<ω. A closely related example
comes from simply considering maximal antichains in ω<ω. In this case, the partial
ordering on finite sequences of natural numbers is defined by σ ≤ τ if and only
if σ � τ . An antichain is a subset of ω<ω such that no two elements in it are
comparable, and an antichain is maximal if it cannot be extended to a proper
superset that is also an antichain. Examples of computable maximal antichains are
easy to come up with: For any fixed n, the set of all elements of ω<ω of length n is
a maximal antichain.

If S is a maximal antichain, then S ≤e S as σ ∈ S if an only if there is some
τ ∈ S that is comparable with σ. As in the example above, this reduction does
not have the unique axiom property. Consider for example the maximal antichain
of all strings of length n. Then every string of length m < n has infinitely many
reasons to be enumerated into the complement of this maximal antichain. Ethan
McCarthy has shown that complements of maximal antichains are also universal for
the cototal enumeration degrees.
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Theorem 2.5 (McCarthy [13]). Every cototal degree contains the complement of a
maximal antichain in ω<ω.

2.5. The set of words that appear in a minimal subshift. We will next give
a more detailed account of our motivating examples, introduced by Jeandel [9]. The
first one requires us to recall some definitions from symbolic dynamics.

Definition 2.6. Let X ⊆ 2ω be closed in the usual topology on Cantor space.

(a) X is a subshift if X is closed under the shift operation, which removes the
first bit in a binary sequence, i.e., aα ∈ X implies α ∈ X.

(b) If X is a subshift then the language of X is the set

LX = {σ ∈ 2<ω : (∃α ∈ X)[σ is a subword of α]}.

The set LX is called the set of forbidden words.
(c) A subshift X is minimal if it has no nonempty proper subset that is also

a subshift. This is equivalent to saying that every σ ∈ LX is a subword of
every α ∈ X.

Jeandel discovered an interesting relationship between the enumeration degree
of the language of a minimal subshift and the Turing degrees of the elements of
the subshift: The Turing degrees of elements in X are exactly the Turing degrees
that enumerate LX . This fact is particularly interesting if one takes into account
Selman’s characterization of enumeration reducibility. For an arbitrary set A, let EA
denote the set of all Turing degrees whose elements compute enumerations of A.
Selman [19] proved that A ≤e B if and only if EB ⊆ EA. Thus, the enumeration
degree of the set LX can be characterized by ELX , which turns out to be exactly
the set of Turing degrees that compute elements of the minimal subshift X. It is
then natural to ask what additional properties an enumeration degree must have
in order to be the enumeration degree of the language of a minimal subshift. The
following theorem shows that it must be cototal.

Theorem 2.7 (Jeandel [9]). LX ≤e LX .

Ethan McCarthy has very recently shown that, in fact, cototality precisely
characterizes the enumeration degrees of languages of minimal subshifts.

Theorem 2.8 (McCarthy [13]). If A is cototal, then A ≡e LX for some minimal
subshift X.

2.6. The non-identity words in a finitely generated simple group. The
second example from Jeandel [9] is related to group theory.

Definition 2.9. Let G be a group.

(a) G is finitely generated if there are finitely many elements in G, called
generators, such that every element in G can be expressed as a product of
these generators. (For convenience, we will assume that the set of generators
is closed under inverses.)

(b) G is simple if its only normal subgroups are G and the trivial group.
(c) The set of identity words of G is the setWG of all words (i.e., finite sequences

of generators) that represent the identity element.
(d) A presentation of G is a pair 〈F | R〉 such that F is a set of generators

and WG is the normal closure of R ⊂ WG.
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The word problem for a group G is the problem of deciding the set WG. Kuzne-
tsov [11] showed that if G is a finitely generated simple group with a presentation
〈F | R〉 such that R is computable, then it has a decidable word problem. Jeandel
considered the collection of all finitely generated simple groups without restricting
the complexity of their presentation. He showed that the set of non-identity words
in a finitely generated simple group is cototal. This was also independently observed
by Thomas and Williams [23].

Theorem 2.10 (Jeandel [9]; Thomas and Williams [23]). If G is a finitely generated
simple group then WG ≤e WG.

This generalizes Kuznetsov’s result, as if a group G = 〈F | R〉 has a computable
set of relations R, then WG is automatically c.e. The fact that WG ≤e WG shows
that WG is also c.e. and hence WG is computable.

2.7. Joins of nontrivial K-pairs. Our next example relates to a class of pairs of
enumeration degrees that have been recently shown to play an important role when
it comes to the first-order definability of relations on De.

Definition 2.11. A pairs of sets {A,B} form a K-pair if there is a c.e. set W such
that A×B ⊆W and A×B ⊆W . A K-pair is nontrivial if neither of its components
is c.e.

K-pairs were introduced by Kalimullin [10]. He showed that they are first-order
definable in the structure of the enumeration degrees and used them to give a
first-order definition of the enumeration jump. Cai, Ganchev, Lempp, Miller, and
M. Soskova [2] used K-pairs to define the class of total enumeration degrees. It
is therefore reasonable to always keep an eye on the class of K-pairs as it might
hold the key to the first-order definability of relations that we are considering in
this article as well: cototal enumeration degrees and the skip operator. In the
next section, K-pairs will give us a wide variety of examples of sets that do not
have cototal degree. When one considers the join A⊕B, however, of a nontrivial
K-pair {A,B}, one always gets a cototal set. To see this, we will need to review an
important property of K-pairs.

Proposition 2.12 (Kalimullin [10]). If {A,B} is a nontrivial K-pair then

• A ≤e B and B ≤e A;
• B ≤e A⊕K and A ≤e B ⊕K.

It follows from the first part that if {A,B} forms a nontrivial K-pair, then
A⊕B ≤e B ⊕A ≡e A⊕B.

We would like to point out that this example generalizes the fact that every
total degree is cototal, as by Cai, Ganchev, Lempp, Miller, and M. Soskova [2],
the total degrees are exactly the ones that contain the join of a particular kind
of a K-pair. The joins of nontrivial K-pairs therefore form a first-order definable
class of cototal enumeration degrees that contains the total enumeration degrees.
Unfortunately, they do not contain all cototal degrees. Ahmad [1] showed that there
are nonsplitting Σ0

2-enumeration degrees, degrees that are not the least upper bound
of any pair of strictly smaller degrees. So, even though, as we have already seen,
all Σ0

2-enumeration degrees are cototal, the nonsplitting ones cannot be joins of
nontrivial K-pairs.
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2.8. Continuous degrees. Motivated by a question of Pour-El and Lempp from
computable analysis, Miller [15] introduced a degree structure that captures the
complexity of elements of computable metric spaces, such as C[0, 1] and [0, 1]ω. This
structure naturally embeds into the enumeration degrees, and its range is strictly
between the class of total enumeration degrees and the class of all enumeration
degrees.

As an example, consider the metric space C[0, 1] of continuous functions on the
unit interval with the standard metric

d(f, g) = max
x∈[0,1]

|f(x)− g(x)|.

A computable presentation of C[0, 1] consists of a fixed dense set {qi}i<ω ⊂ C[0, 1]
on which the metric is computable as a function on indices. Fix, for example, a
reasonable enumeration of the polygonal functions having segments with rational
endpoints. A name nf for a continuous function f is a code (say, as an element
of ωω) that gives a way to approximate f . Specifically, a name nf should code a
function taking a rational number ε > 0 and producing an index nf (ε) such that
d(f, qnf (ε)) < ε. For f, g ∈ C[0, 1], we say that f is reducible to g if every name for g
computes a name for f . In the same way, we can compare the complexity of elements
from arbitrary metric spaces. This reducibility induces a degrees structure, the
continuous degrees. It turns out that every continuous degree contains an element
of C[0, 1].

In order to understand the embedding of the continuous degrees into the enumer-
ation degrees, it is easier to focus on another computable metric space: The Hilbert
cube is [0, 1]ω along with the metric

d(α, β) =
∑
n∈ω

2−n|α(n)− β(n)|.

We can take as our dense set (a reasonable enumeration of) the rational sequences
with finite support. As was the case with C[0, 1], every continuous degree contains
an element of [0, 1]ω.

Miller gave a way to assign to a sequence α ∈ [0, 1]ω a set Aα such that EAα
(defined in Section 2.5) is the set of all Turing degrees that compute names of α.
This induces an embedding of the continuous degrees into the enumeration degrees.

Definition 2.13 (Miller [15]). For α ∈ [0, 1]ω, let

Aα =
⊕
i<ω

({q ∈ Q : q <Q α(i)} ⊕ {q ∈ Q : q >Q α(i)}).

It is not hard to see that Aα has the desired property: Computing a name for α
is exactly as hard as enumerating Aα. We say that the enumeration degree of Aα
is continuous. By showing that there is a nontotal continuous enumeration degree,
Miller proved that there are continuous functions that do not have a name of least
Turing degree, which answered Pour-El and Lempp’s question.

Note that if α does not have any rational entries, then Aα is a total set. If, on the
other hand, α does have rational entries, then every component of Aα is nonuniformly
equivalent to a total set. The existence of nontotal continuous enumeration degrees
shows that this nonuniformity is significant. We are nevertheless able to show that
all continuous degrees are cototal.

Proposition 2.14. Every continuous degree is cototal.
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Proof. Let α ∈ [0, 1]ω and Aα =
⊕

i<ω({q ∈ Q : q <Q α(i)} ⊕ {q ∈ Q : q >Q α(i)}).
By rearranging the odd and even elements in every column of Aα, we obtain the set
Bα ≡e Aα defined by

Bα =
⊕
i<ω

({q ∈ Q : q ≤Q α(i)} ⊕ {q ∈ Q : q ≥Q α(i)}).

It is now easy to see that q is a member of the i-th even column of Aα if and only if
there is an r >Q q such that r is in the i-th even column of Bα. Similarly, q is a
member of the i-th odd column of Aα if and only if there is an r <Q q such that r

is in the i-th odd column of Bα. It follows that Aα ≤e Bα ≡e Aα. �

2.9. Sets with good approximations have cototal degree. Lachlan and Shore
[12] introduced the following general notion of an approximation to a set.

Definition 2.15. Let A be a set of natural numbers. A uniformly computable
sequence of finite sets {As}s<ω (given by canonical indices) is a good approximation
to A if

• for every n, there is a stage s such that A � n ⊆ As ⊆ A; and
• for every n, there is a stage s such that for every t > s, if At ⊆ A then
A � n ⊆ At.

This definition can be seen as a generalization of Cooper’s notion of a Σ0
2-ap-

proximation with infinitely many thin stages, used to show the density of the
Σ0

2-enumeration degrees [5]. Lachlan and Shore [12] introduced the hierarchy of the
n-c.e.a. sets. A set is 1-c.e.a. if it is c.e., and (n + 1)-c.e.a. if it is the join of an
n-c.e.a. set X and a set Y c.e. in X. It is not difficult to see that the enumeration
degrees of the 2-c.e.a. sets are exactly the Σ0

2-enumeration degrees. Lachlan and
Shore proved that every set that is n-c.e.a. has a good approximation and then
showed that the enumeration degrees of the n-c.e.a. sets are dense. Harris [8] proved
that sets that have good approximations always have cototal enumeration degrees.
We outline his proof below for completeness.

Proposition 2.16 (Harris [8, Proposition 4.1]). If A has a good approximation,
then KA ≤e KA.

Proof. Let {As}s<ω be a good approximation to A. Consider the set C defined by

C = {〈x, s〉 : (∃t > s)[At ⊆ A & x /∈ At]}.

It follows from the definition that C ≤e A. Using the fact that KA =
⊕

e<ω Γe(A)
is a uniform upper bound of the set of complements of all sets that are enumeration
reducible to A, we obtain that C ≤e KA. Now, let us take a closer look at C:

C = {〈x, s〉 : (∀t > s)[At ⊆ A→ x ∈ At]}.

Using the second property of good approximations, notice that x ∈ A if and only if
there is a stage s such that 〈x, s〉 ∈ C. It follows that A ≤e C. This now gives us
that KA ≡e A ≤e C ≤e KA. �

In particular, we obtain that the enumeration degrees of n-c.e.a. sets are cototal.
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3. The skip

In the previous section, we saw many examples of cototal sets and enumeration
degrees. In this section, we study the skip operator, in part to provide a wide
variety of examples of degrees that are not cototal. Recall that the skip of a set
A ⊆ ω is A♦ = KA. As we saw in the introduction, the skip gives us an easy way
to determine whether or not a degree is cototal. For the reader’s convenience, we
restate that result:

Proposition 1.1. A set A ⊆ ω has cototal degree if and only if A ≤e A♦.

In addition to being a tool in our study of cototality, the skip is a natural
operator in its own right. As we discussed in the introduction, the enumeration
jump fails to have some of the nice properties of the Turing jump. For example,
it is well-known that A ≤T B if and only if KA ≤1 K

B. The analogous property
does not hold, in general, for the enumeration jump. It is true that A ≤e B implies
KA⊕KA ≤1 KB ⊕KB , but the reverse implication can fail; we will see an example
after Proposition 3.22. The skip, on the other hand, gives us an embedding of the
enumeration degrees into the 1-degrees.

Proposition 3.1. A ≤e B if and only if A♦ ≤1 B
♦.

Proof. If A ≤e B, then KA ≤e B and hence KA is a fixed column of KB =⊕
e<ω Γe(B), where {Γe}e∈ω is the standard listing of all enumeration operators. It

follows that KA is a fixed column in KB and hence KA ≤1 KB .
If KA ≤1 KB then KA ≤1 KB and hence A ≡e KA ≤e KB ≡e B. �

This shows that we can define the skip operator on degrees.

Definition 3.2. The skip of the enumeration degree a is a♦ = dege(A
♦) for any

member A ∈ a.

3.1. Skip inversion. It follows from Proposition 1.1 that an enumeration degree a
is cototal if and only if a ≤ a♦, if and only if a♦ = a′. The definition of the
enumeration jump operator restricts its range to the total enumeration degrees
and by monotonicity to the total enumeration degrees in the cone above 0′e. By
transferring the Friedberg Jump Inversion Theorem through the standard embedding
into the enumeration degrees, we see that every total enumeration degree above 0′e
is in the range of the jump operator. The range of the skip operator is also restricted
by monotonicity to enumeration degrees above 0♦

e = 0′e. We show that this is
the only restriction on the range of the skip operator, thereby providing a further
analogy between the skip and the Turing jump.

Theorem 3.3. For any set S ≥e K, there is a set A such that A♦ ≡e S. (In fact,
we also have S ≡e A ≡e A⊕K and S ≤e A⊕K.)

Proof. Given a set S ≥e K, we build a set A such that S ≡e A ≤e A♦ ≤e A⊕K.
For a set X ⊆ ω and a natural number e, let X [e] = {〈e, x〉 : x ∈ ω}. We will build A
meeting two types of requirements:

Re : e ∈ S ⇐⇒ A[e] 6= ω[e],

Pe : “force e into KA subject to higher-priority restraints”.

The Re-requirements ensure that S ≤e A, as e ∈ S if and only if there is an x ∈ ω
such that 〈e, x〉 ∈ A. The basic strategy for Re is quite simple: If e /∈ S then
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enumerate all of ω[e] into A. Otherwise, withhold one number ae ∈ ω[e] from A and
enumerate ω[e] r {ae} into A.

The Pe-requirements will let us prove that A♦ can be enumerated from K and S.
The basic strategy for Pe is to try to force e into KA by adding a finite set to
the current version of A so that e /∈ KA can only be caused by the finitely many
numbers ai that higher priority R-requirements use for coding the values of S. We
will use the 1-equivalent form of the set KA, namely, {e : e ∈ Γe(A)}, where {Γe}e∈ω
is our fixed listing of all enumeration operators.

We now proceed in stages as follows:
Stage 0: Set ae = 〈e, 0〉 for all e ∈ ω, and set A0 = ∅.
Stage s = e+ 1: For each subset D ⊆ {i : i < e}, check if there are a finite subset

FD ⊆ ωr {〈i, ai〉 : 0 ≤ i < e} and a stage t such that e ∈ Γe,t(FD ∪{〈i, ai〉 : i ∈ D}).
If so, take FD from the least such pair; otherwise, set FD = ∅. (Without loss
of generality, we will assume that each FD is “downward closed in each column,
respecting the ai”, i.e., that for all 〈i, j〉 ∈ FD, {〈i, j′〉 : j′ < j} r {〈i, ai〉} ⊆ FD.)
Set

F =
⋃

D⊆{i : i<e}

FD.

Enumerate F into As+1. For each j ≥ e with aj ∈ F , we reset aj ∈ ω[j] to be a
fresh number outside F .

Denote the resulting set after ω many stages by Aω. Finally, let

A = Aω ∪ {ae : e /∈ S}.
In order to make the proof more compact, we introduce the following definition

and prove a lemma about it:

Definition 3.4. For sets A,B ⊆ ω, we say A ≤e′ B if there is a “K-c.e. enumeration
operator reducing A to B”, i.e., a K-c.e. set Φ such that for all x, x ∈ A if and only
if there is a finite set F ⊆ B (given by a canonical index) with 〈x, F 〉 ∈ Φ.

Lemma 3.5. For any sets A,B ⊆ ω, we have A ≤e′ B if and only if A ≤e B ⊕K.

Proof. If A ≤e′ B via a K-c.e. operator Φ = WK , say, then each axiom 〈x, F 〉 ∈ Φ
can be rewritten into axioms 〈x, F, P,N〉 where 〈x, F 〉 ∈ WK via computations
requiring P ⊆ K and N ⊆ K, and these axioms 〈x, F, P,N〉 can be combined into
a single c.e. enumeration operator Ψ witnessing A ≤e B ⊕K ⊕K ≡e B ⊕K.

Conversely, suppose A ≤e B⊕K⊕K(≡e B⊕K) via a c.e. enumeration operator Ψ,
then we can define a K-c.e. enumeration operator Φ by enumerating 〈x, F 〉 into Φ
for any 〈x, F ⊕ P ⊕N〉 ∈ Ψ with P ⊆ K and N ⊆ K. �

From the construction and the definition of A, it is now clear that all Re-require-
ments are satisfied, and so K ≤e S ≤e A ≤e A♦.

We next observe that

(1) {ae}e∈ω ≤T K.
Using (1) and that e ∈ S if and only if ae /∈ A, it is now clear that both A ≤e′ S and
S ≤e′ A, and so by Lemma 3.5, we have both A ≤e S ⊕K ≡e S and S ≤e A⊕K.
It follows that A ≡e S.

Finally, using (1) and the action of the Pe-requirements, we also have A♦ ≤e′ A.
This is because K can figure out for which D we found an FD at stage s = e+ 1
such that e ∈ Γe(FD ∪ {〈i, ai〉 : i ∈ D}). Then e ∈ A♦ if and only if A intersects



14 ANDREWS, GANCHEV, KUYPER, LEMPP, MILLER, A. SOSKOVA, AND M. SOSKOVA

{〈i, ai〉 : i ∈ D} for every such D. So again by Lemma 3.5, we have that A♦ ≤e
A⊕K ≡e S. �

Notice that the proof of Theorem 3.3 directly gives us the following result.

Theorem 3.6. Let n ≥ 2. For any Π0
n-set S ≥e K, there is a Σ0

n-set A such that
A♦ ≡e S. Furthermore, for any Σ0

n-set S ≥e K, there is a Π0
n-set A such that

A♦ ≡e S.

Proof. This follows directly from the proof of Theorem 3.3, noting that A as built
there is equal to Aω ∪ {〈e, k〉 : e /∈ S}, that Aω is ∆0

2, and that {〈e, k〉 : e /∈ S} is of
the same complexity as the complement of S. �

Definition 3.7. An enumeration degree a is quasiminimal if it is nonzero and the
only total enumeration degree bounded by a is 0e.

McEvoy [14] proved that the enumeration jump restricted to the quasiminimal
degrees has the same range as the unrestricted jump operator. We show that the
skip has the same property.

Corollary 3.8. For any set S ≥e K, there is a set A of quasiminimal degree such
that A♦ ≡e S.

Proof. We modify the construction in Theorem 3.3 slightly. We add additional
requirements Qe that ensure that A is quasiminimal:

Re : e ∈ S ⇐⇒ A[e] 6= ω[e],

Pe : “force e into KA subject to higher-priority restraints”,

Qe : Γe(A) = X ⊕X ⇒ X is computable.

At stage s = e+1, after we have defined the set F for the sake of the requirement Pe,
we will handle the requirement Qe. The procedure is similar. For any subset
D ⊆ {i : i < e}, check if there are a finite subset ED ⊆ ω r {〈i, ai〉 : 0 ≤ i < e}, a
number x, and a stage t such that {2x, 2x + 1} ⊆ Γe,t({〈i, ai〉 : i ∈ D} ∪ ED); for
any such D, choose the set ED from the least such triple; if there is no such triple,
set ED = ∅. Set

E =
⋃

D⊆{i : i<e}

ED.

Enumerate E into As+1 and then redefine the values of aj appropriately: If j ≥ e
and aj ∈ F ∪ E, we reset aj ∈ ω[j] to be a fresh number outside F ∪ E.

If Γe(A) turns out to be a total set X ⊕ X, then we can compute X: Let
A∗ = (ω[<e] ∩A)∪ω[≥e]. As every column of A is finitely different from ω, it follows
that this is a computable set and A ⊆ A∗. Now, x ∈ X if and only if 2x ∈ Γe(A

∗)
and x /∈ X if and only if 2x+ 1 ∈ Γ(A∗). �

3.2. Further properties of the skip operator and examples. We will now
investigate the possible behavior of the iterated skip operator.

Definition 3.9. Let a be an enumeration degree. We inductively define a〈n〉, the
n-th skip of a, for every natural number n.

• a〈0〉 = a,
• a〈n+1〉 = (a〈n〉)♦.
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0e

a

0′e

a♦

0′e

a♦♦

0′′′e

a〈3〉

...

a

a♦

a♦♦

a〈3〉

Figure 2. Iterated skips of a degree: the zig-zag

If a is a cototal enumeration degree, then every iteration of the skip of a agrees
with the corresponding iteration of the jump of a, i.e., for all n < ω, we have that
a〈n〉 = a(n). Theorem 3.3 proves that there are non-cototal enumeration degrees,
e.g., the skip invert of a nontotal enumeration degree. It is natural to ask what we
can say in general about the sequence {a〈n〉}n∈ω. One immediate observation is
that even though the skip of A need not be above A, its double skip always is: For

any set A, we know that A ≤1 A
♦. Applying this twice, we have A ≤1 A♦ ≤1 A

♦♦,
so a fortiori A ≤e A♦♦. It follows that a〈n〉 ≤ a〈n+2〉 for all n. In addition, by
monotonicity, we have that for every n, ∅(n) ≤ a〈n〉. If a〈n〉 is not cototal for every
natural number n, then we have a zig-zag behavior of the skip, illustrated in Figure 2.
We will search for examples of degrees whose skips have this general behavior.

3.2.1. Skips of generic sets. We will start by investigating the skip for the class
of enumeration degrees of 1-generic sets. We will define a relativized form of
1-genericity, suitable for the context of the enumeration degrees.

Definition 3.10. Let G and X be sets of natural numbers. G is 1-generic relative
to 〈X〉 if and only if for every W ⊆ 2<ω such that W ≤e X:

(∃σ � G)[σ ∈W ∨ (∀τ � σ)[τ /∈W ]].

If X = ∅, then we call G simply 1-generic and if X = K, then G is 2-generic.

Note that G is 1-generic relative to X in the usual sense if and only if G is
1-generic relative to 〈X ⊕X〉 in the sense of the definition above.

Relativizing the notion of quasiminimality, we get the following two notions:

Definition 3.11. An enumeration degree a is a quasiminimal cover of an enu-
meration degree b if b < a and there is no total enumeration degree x such that
b < x ≤ a. The degree a is a strong quasiminimal cover of b if every total
enumeration degree x bounded by a is below b.

The next proposition exhibits two important properties of generic enumeration
degrees.

Proposition 3.12. Let G be 1-generic relative to 〈X〉.



16 ANDREWS, GANCHEV, KUYPER, LEMPP, MILLER, A. SOSKOVA, AND M. SOSKOVA

(a) dege(G⊕X) is a strong quasiminimal cover of dege(X).
(b) G is 1-generic relative to 〈X〉.

Proof. Let Y be a set of natural numbers and assume that Y ⊕ Y ≤e G ⊕X via
the enumeration operator Γ. We will show that Y ⊕ Y ≤e X. Consider the set

Q = {σ : (∃x)[{2x, 2x+ 1} ⊆ Γ(σ ⊕X)]},

where we write σ ⊕X to mean {n : σ(n) = 1} ⊕X. Note that Q is enumeration
reducible to X and so, by our assumptions, G must avoid it. Let σ � G be a string
with no extension in Q. Then z ∈ Y ⊕ Y if and only if there is an extension τ � σ
such that z ∈ Γ(τ ⊕X).

For the second part of this proposition, we introduce the following notation. If
σ ∈ 2<ω, then let σ̄ be the string obtained by inverting every bit of σ. For W ⊆ 2<ω,
let W− = {σ̄ : σ ∈ W}. Note that σ̄ � G if and only if σ � G. So if G meets W−

then G meets W , and if G avoids W− then G avoids W . Finally, note that W ≤e X
implies that W− ≤e X. �

It is well known that the Turing jump of a 1-generic set has a nice characterization:
KG ≡T G⊕K, or, in other words, G is generalized low. This property relativizes:
If G is 1-generic relative X, then KG⊕X ≡T G⊕KX . A similar property is true of
the skip of a generic set G relative to 〈X〉.

Proposition 3.13. If G is 1-generic relative to 〈X〉, then (G⊕X)♦ ≡e G⊕X♦.

Proof. Note that we always have G⊕X♦ ≤e (G⊕X)♦, no matter what the sets G
and X are, simply from the monotonicity of the skip operator. The nontrivial
reduction is the reverse one. Suppose 〈e, x〉 ∈ (G ⊕ X)♦, i.e., x /∈ Γe(G ⊕ X).
Consider the set

De,x = {σ ∈ 2<ω : x ∈ Γe(σ ⊕X)}.
This set is enumeration reducible to X uniformly in e and x, and so there must be
a string σ ≺ G such that no extension of σ is in De,x. The set

Ee,x = {σ : (∃τ � σ)[τ ∈ De,x]}

is also uniformly enumeration reducible to X, and so its complement is uniformly
enumeration reducible to X♦. We claim that:

〈e, x〉 ∈ (G⊕X)♦ if and only if (∃σ)[{n : σ(n) = 0} ⊆ G & σ ∈ Ee,x].

The implication from left to right has already been established: If 〈e, x〉 ∈ (G⊕X)♦,
then the initial segment of G with no extension in De,x witnesses that the statement

on the right is true. So let 〈e, x〉 be such that there is a σ with {n : σ(n) = 0} ⊆ G
and such that σ ∈ Ee,x. Towards a contradiction, suppose that 〈e, x〉 /∈ (G⊕X)♦,
i.e., 〈e, x〉 ∈ Γe(G⊕X). Let τ ≺ G be such that 〈e, x〉 ∈ Γe(τ ⊕X) and define σ∗

of length max(|σ|, |τ |) as follows

σ∗(n) =

{
σ(n) if n < |σ|,
τ(n) if |σ| ≤ n < |τ |.

Then σ∗ is an extension of σ. Furthermore, if τ(n) = 1 then σ∗(n) = 1. Indeed, this
is obvious for n ≥ |σ|, and for n < |σ|, this follows from the fact that {n : σ(n) =
0} ⊆ G and τ ≺ G. Thus σ∗ ∈ De,x, contradicting our assumption that σ has no
extension in De,x. �
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Now, we can easily give an example of a set G whose iterated skips form a zig-zag.
Consider G to be a set that is arithmetically generic, i.e., G is 1-generic relative
to 〈∅(n)〉 for every natural number n. Note that G has the same property. Then by
induction using the characterization above we can show that for all n < ω:

• If n is odd then G〈n〉 ≡e G⊕ ∅(n) and (G)〈n〉 ≡e G⊕ ∅(n).
• If n is even then G〈n〉 ≡e G⊕ ∅(n) and (G)〈n〉 ≡e G⊕ ∅(n).

Furthermore, all iterates of the skip for both sets G and G are not total, as they
have quasiminimal degree relative to the corresponding iterate of the jump of ∅. It
follows that they are also not cototal, thus giving us a double zig-zag as in Figure 3.
It is worth noting that only the reductions implied by the diagram occur. For
example, G �e G〈3〉; otherwise G〈3〉 ≡e G⊕G〈3〉 ≡e G⊕G⊕ ∅〈3〉 would be total.

0e

g g

0′e

g♦g♦

0′′e

g♦♦ g♦♦

0′′′e

g〈3〉g〈3〉
...

g

g♦

g♦♦

g〈3〉

g

g♦

g♦♦

g〈3〉

Figure 3. The iterated skips of the degrees of an arithmetically
generic set and its complement: double zig-zag

3.2.2. Skips of nontrivial K-pairs. Kalimullin [10] relativized the notion of a K-pair
in a way similar to how we relativized the notion of 1-genericity.

Definition 3.14. A pair of sets of natural numbers {A,B} forms a K-pair relative
to 〈X〉 if there is a set W ≤e X such that A×B ⊆W and A×B ⊆W . The pair
{A,B} is a nontrivial K-pair relative to 〈X〉 if, in addition, A �e X and B �e X.

Note that if {A,B} forms a nontrivial K-pair, then {A,B} forms a nontrivial
K-pair relative to every 〈X〉 such that A,B �e X. We summarize some properties
of relativized K-pairs below.

Proposition 3.15 (Kalimullin [10]). Let A,B,X ⊆ ω and suppose that {A,B}
forms a nontrivial K-pair relative to 〈X〉.

(a) If C ≤e B then {A,C} forms a K-pair relative to 〈X〉.
(b) A ≤e B ⊕X.
(c) A ≤e B ⊕X♦.
(d) dege(A⊕X) and dege(B ⊕X) are strong quasiminimal covers of dege(X).
(e) For every Z ⊆ ω, the degrees dege(A⊕X ⊕ Z) and dege(B ⊕X ⊕ Z) have

a greatest lower bound, and it is dege(X ⊕ Z).
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Note that items (a), (b) and (c) are symmetrically true if we swap A and B.
The skip of a nontrivial K-pair relative to 〈X〉 has the following properties:

Proposition 3.16. If {A,B} forms a nontrivial K-pair relative to 〈X〉, then

(A⊕X)♦ ≤e B ⊕X♦ and (B ⊕X)♦ ≤e A⊕X♦.

The oracle set X is of cototal degree if and only if for every nontrivial K-pair {A,B}
relative to 〈X〉,

(A⊕X)♦ ≡e B ⊕X♦ and (B ⊕X)♦ ≡e A⊕X♦.

Proof. If {A,B} forms a nontrivial K-pair relative to 〈X〉, then {A ⊕X,B} also
forms a nontrivial K-pair relative to 〈X〉: Replace the witnessing set W by

W ∗ = {〈2a, b〉 : 〈a, b〉 ∈W} ∪ {〈2a+ 1, b〉 : a ∈ X}.

As KA⊕X ≡e A⊕X, it follows that {KA⊕X , B} forms a nontrivial K-pair relative
to 〈X〉, and so

(A⊕X)♦ = KA⊕X ≤e B ⊕X♦.

On the other hand, if X is cototal, then B ≤e A⊕X ≤e A⊕X ≤e (A⊕X)♦, and by
the monotonicity of the skip operator, we automatically have B ⊕X♦ ≤e (A⊕X)♦.

Finally, consider the oracle set X and let {A,B} be a nontrivial (unrelativized)
K-pair that is not bounded by X. Note that both {A,B} and {A⊕X,B ⊕X} are
nontrivial K-pairs relative to 〈X〉. If the characterization of the skip operator holds
for both pairs, then we have that

(A⊕X)♦ ≡e B ⊕X♦ ≡e B ⊕X ⊕X♦, and

(B ⊕X)♦ ≡e A⊕X♦ ≡e A⊕X ⊕X♦.

Now, using the last property from Proposition 3.15, we have that

dege(X
♦) = dege(A⊕X♦) ∧ dege(B ⊕X♦) =

dege(A⊕X ⊕X♦) ∧ dege(B ⊕X ⊕X♦) = dege(X ⊕X♦).

It follows that X is of cototal degree. �

If {A,B} is a nontrivial K-pair and both A and B are not arithmetical, then
{A,B} is a nontrivial K-pair relative to 〈∅(n)〉 for every natural number n. As every
set ∅(n) is of (co)total enumeration degree, it follows by Proposition 3.16 that the
iterated skips of A and B also form a double zigzag: For all n < ω,

• if n is odd then A〈n〉 ≡e B ⊕ ∅(n) and B〈n〉 ≡e A⊕ ∅(n), and
• if n is even then A〈n〉 ≡e A⊕ ∅(n) and B〈n〉 ≡e B ⊕ ∅(n).

Furthermore, by Proposition 3.15, for every natural number n, {dege(A)〈n〉,dege(B)〈n〉}
forms a minimal pair of quasiminimal degrees above 0

(n)
e .

A pair of enumeration degrees {a,b} forms a K-pair (relative to x) if there are
representatives A ∈ a and B ∈ b that form a K-pair (relative to x). We will use
the characterization of the skips of K-pairs along with the following theorem of
Ganchev and Sorbi [6] to give an example of a degree whose iterated skips behave
quite differently.

Theorem 3.17 (Ganchev, Sorbi [6]). For every enumeration degree x > 0e, there
is a degree a ≤ x such that a is half of a nontrivial K-pair and such that a′ = x′.
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One of the main ingredients in the proof of the theorem above is the following
observation, which follows easily from Proposition 3.16. If {A,B} forms a nontrivial
K-pair, then A and B have equivalent enumeration jumps:

Je(A) ≡e A⊕A♦ ≡e A⊕B ⊕ ∅′ ≡e B ⊕B♦ ≡e Je(B).

Now consider a nonzero enumeration degree x ≤e 0′e, and let a ≤ x be half of a
nontrivial K-pair such that a′ = x′. Let b be such that {a,b} forms a nontrivial
K-pair. Then b♦ = a ∨ 0′e = 0′e and b′ = a′ = x′. In particular, if we take x to be
high, i.e., such that x′ = 0′′e , then we have an example of an enumeration degree
such that all iterations of its skip are total enumeration degrees, but mismatch its
iterations of the jump by one iteration:

b♦ < b′ = b♦♦ < b′′ = b〈3〉 < · · · < b(n) = b〈n+1〉 < · · · .

If we take x to be an intermediate degree, i.e., a degree such that for all n, 0
(n)
e <

x(n) < 0
(n+1)
e then we get the following:

b♦ < b′ < b♦♦ < b′′ < b〈3〉 < · · · < b(n) < b〈n+1〉 < · · · .

We end this discussion with some thoughts about the definability of the skip
operator. Kalimullin [10] proved that the relation “{a,b} forms a K-pair relative
to x” is first-order definable with parameter x. Using this result, he showed that
the enumeration jump operator is first-order definable. Combining these results
with the characterization of the skip operator for nontrivial K-pairs, we immediately
obtain the following result.

Corollary 3.18. The relation

SK = {(a,a♦) : a is half of a nontrivial K-pair }

is first-order definable in De.

Proof. If a is half of a nontrivial pair, then a♦ = 0′e ∨ b where b is some nonzero
degree that forms a K-pair with a. �

It remains an open question whether or not the skip operator is first-order
definable in De.

3.2.3. A skip 2-cycle. As seen above, the skip can exhibit a zig-zag behavior. We
now show that there is another extreme case that could occur: The double skip a♦♦

of an enumeration degree a could be equal to a itself. Perhaps surprisingly, this
degree is not constructed in a way that is common in computability theory. Instead,
we use the following theorem due to Knaster and Tarski.

Theorem 3.19 (Knaster–Tarski Fixed Point Theorem). Let L be a complete lattice
and let f : L → L be monotone, i.e., for all x, y ∈ L, we have that x ≤ y implies
that f(x) ≤ f(y). Then f has a fixed point. In fact, the fixed points of f form a
complete lattice.

We apply the Knaster–Tarski theorem to a function on 2ω, which we view as the
power set lattice of ω, ordered by subset.

Theorem 3.20. There is a set A such that A♦♦ = A.
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Proof. Let f : 2ω → 2ω be the double skip operator, i.e., f(A) = A♦♦. Note that if
A ⊆ B, then KA ⊆ KB, so A♦ ⊇ B♦. Applied twice, we obtain A♦♦ ⊆ B♦♦, so f
is monotone. Hence, by the Knaster–Tarski Fixed Point Theorem, there is an A
such that A♦♦ = A. �

Note that we do not just have that A and A♦♦ are enumeration equivalent, but
they are equal as sets. However, we will mainly be interested in the fact that the
enumeration degree a of A satisfies a♦♦ = a. If we have such a degree a, then we
will say that a and a♦ form a skip 2-cycle.

As we show next, skip 2-cycles are computationally very complicated; namely,
they compute all hyperarithmetic sets.

Proposition 3.21. Let a and a♦ form a skip 2-cycle. Then a ≥e b for every total
hyperarithmetic degree b.

Proof. Let A be a set of degree a. We build an enumeration operator Φ such that
Φ(A, p) = H(p) ⊕H(p) for every ordinal notation p, where H(p) is defined as in
[17, Chapter 2]. By the Recursion Theorem, we may assume that we know an index

for Φ. We let Φ(A, 1) = H(1)⊕H(1) = ∅ ⊕ ω.
Now assume that |p| is a successor, say, p = 2q and so |p| = |q|+ 1. Note that if

C ≥e D ⊕D, then C♦ ≥e KD ⊕KD uniformly in an index for the first reduction.
Furthermore, we inductively assume that Φ(A, q) = H(q)⊕H(q). Combining these
facts,

A ≡e A♦♦ ≥e H(22q )⊕H(22q ) ≥e H(p)⊕H(p)

uniformly, so let Φ(A, p) = H(p)⊕H(p).
Finally, assume that |p| is a limit ordinal, say, p = 3 · 5e and so |p| is the limit

of |q0|, |q1|, . . . , where qi = ϕe(i). Using the inductive assumption that Φ(A, qi) =

H(qi)⊕H(qi), we can set Φ(A, p) = H(p)⊕H(p), where H(p) =
⊕

i∈ωH(qi). �

Given the fact that we have shown the existence of a skip 2-cycle, it is only natural
to consider whether (proper) skip n-cycles exist for any other natural number n ≥ 1.
This turns out to be false.

Proposition 3.22. Let n ∈ ω be nonzero such that a〈n〉 = a. Then a♦♦ = a.

Proof. First, observe that a〈2n〉 = a〈n〉 = a, so without loss of generality we may
assume that n is even. By monotonicity of the double skip, we then have that

a ≤e a〈2〉 ≤e · · · ≤e a〈n−2〉 ≤e a〈n〉 = a,

so

a = a〈2〉 = · · · = a〈n−2〉 = a〈n〉. �

The set A we obtained in Theorem 3.20 allows us to give the example of a pair
of sets A and B that illustrate the flaw in the enumeration jump mentioned in the
last paragraph of Section 1.2.

Proposition 3.23. Je(A) ≡1 Je(B) does not necessarily imply A ≡e B.

Proof. Let A be the set we obtained in Theorem 3.20, and let B = A♦ = KA,
so A = B♦. Then KA = B ≤1 KB since B is a column of KB, and similarly,
KB = A ≤1 KA. It follows that

KA ⊕KA ≤1 KB ⊕B ≤1 KB ⊕KB ≡1 KB ⊕KB ,
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and similarly

KB ⊕KB ≤1 KA ⊕A ≤1 KA ⊕KA.

Thus Je(A) = KA ⊕KA ≡1 KB ⊕KB = Je(B), but clearly A is not enumeration
equivalent to B. �

4. Separating cototality properties

4.1. Degrees that are not weakly cototal. Let us begin by showing that the
weakest cototality property we introduced, aptly named weakly cototal, is nontrivial,
i.e., that there are degrees that are not weakly cototal. We will present three
different examples in this section. First, we note that sufficiently generic sets are
not weakly cototal.

Proposition 4.1. If a is a 2-generic enumeration degree, then a is not weakly
cototal.

Proof. Let G be 2-generic and let A ≡e G. Towards a contradiction, let us assume
that A has total enumeration degree. Then by Proposition 3.13 with X = ∅, we
have that

G⊕K ≡e G♦ ≥e A.
By Proposition 3.12(b) with X = K, G is 2-generic, so by Proposition 3.12(a)
with X = K and the totality of dege(A), we obtain that A ≤e K. It follows
that G ⊕K ≡e A ⊕K ≥e A ⊕K, and so dege(G ⊕K) is total. This contradicts
Proposition 3.12(a), that dege(G⊕K) is a quasiminimal cover for dege(K) and so
cannot be a total enumeration degree. �

Next, we show that we can also get such examples using K-pairs.

Proposition 4.2. Let a,b 6≤e 0′e form a nontrivial K-pair. Then a is not weakly
cototal.

Proof. Let {A,B} form a nontrivial K-pair with A,B �e K. It follows that {A,B}
forms a nontrivial K-pair relative to 〈K〉, and so by Proposition 3.15, the degree
of B ⊕K is a strong quasiminimal cover of 0′e. Towards a contradiction, suppose
that A has weakly cototal degree. As K-pairs are closed with respect to enumeration
equivalence, we may assume that A is of total enumeration degree. By the same
Proposition 3.15, we have, on the one hand, that A ≤e B ⊕K and so A ≤e K, and
on the other hand, that B ≤e A. It follows that B ≤e K, contradicting our choice
of B. �

For our final example of a degree that is not weakly cototal, recall from Theo-
rem 3.20 that there is a degree a such that a♦♦ = a. Such a degree is not weakly
cototal.

Proposition 4.3. Let a be such that a♦♦ = a. Then a is not weakly cototal.

Proof. Towards a contradiction, assume that A in the degree a is such that A has
total enumeration degree. Then A♦ ≥e A implies that

A♦♦ ≥e
(
A
)♦ ≥e A,

so A is the skip of a total degree and hence total. But then A♦♦ >e A, which is a
contradiction. �
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4.2. Weakly cototal degrees that are not cototal. We will prove the next
separation using the skip inversion we proved in Theorem 3.3 above.

Proposition 4.4. There is a degree a that is weakly cototal, but not cototal.

Proof. Let B ≥e K be any total set, and let S = KB. Then note that S ≡e B, so
the degree of S is total, but S is not total as a set. Now apply Theorem 3.3 to
obtain an A such that A♦ ≡e S and S ≤e A⊕K.

Then A is weakly cototal since A ≡e KA and KA = A♦ ≡e S, which has total
degree. Let a be the degree of A. We claim that a is not cototal. By Proposition 1.1,
we need to show that A 6≤e A♦. Towards a contradiction, assume that A ≤e A♦.
Since A♦ ≥e K always holds, we now see that

S ≡e A♦ ≥e A⊕K ≥e S
so S would be a total set, which is a contradiction. �

An alternative way to separate the weakly cototal degrees from the cototal degrees
is given by the following proposition.

Proposition 4.5. If b 6≤ 0′e but forms a nontrivial K-pair with a ≤ 0′e, then b
forms a minimal pair with b♦.

Proof. Towards a contradiction, assume there is a nonzero degree c such that
c ≤ b and c ≤ b♦. The fact that c ≤ b gives us that a and c form a K-pair by
Proposition 3.15(a). Using this, Proposition 3.15(b), and Proposition 3.16 twice, we
have

b ≤ a♦ = c⊕ 0′e ≤ b♦ = a⊕ 0′e = 0′e.

So b ≤ 0′e, which is a contradiction. �

Corollary 4.6. If b is as in the previous proposition, then b is weakly cototal, but
not cototal.

Proof. By the previous proposition combined with Proposition 1.1, b is not cototal.
On the other hand, from Proposition 3.16 we know that B♦ ≡e A⊕K ≡e K, since
A ≤e K, and K has total degree. As in the proof of Proposition 4.4, this implies
that B is weakly cototal. �

The only separation left to prove is the separation of the cototal degrees from
the graph-cototal degrees. We will prove this result in the next section.

5. There is a cototal degree that is not graph-cototal

Theorem 5.1. There is a cototal enumeration degree that is not graph-cototal.

Proof. We fix the undirected graph G = (ω<ω, E), where the edge relation is given
by E(a, b) if and only if a− = b or a = b− (i.e., a is an immediate successor of b
or the immediate predecessor of b). We will build the complement of a maximal
independent set for the graph G. Recall that this is a subset A ⊆ ω<ω with the
property that every element a ∈ ω<ω is either outside A or is connected by an edge
to an element outside A, but not both.

Our other condition on the set A will be that it is not enumeration equivalent to
a graph-cototal set. We construct A as such using a construction in the framework
of a 0′′′-priority construction over 0′. In particular, there will be some strategies α
which injure other strategies β with α ≺ β, thus there will be injury along the true
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path. Also, we will have strategies β which cause strategies α ≺ β to revert to a
previous state in α’s construction, though each α and state in α’s construction will
only be susceptible to reversion by finitely many β � α.

At every moment in the construction, we will say some strategies restrain elements
in A and some restrain elements out of A. When we refer to the set A at any given
moment in the dynamic construction, we mean

ω<ω r {a : some strategy β currently restrains a out of A}.

Our set A ⊆ ω<ω now needs to satisfy the following requirements, for all a ∈ ω<ω
and all enumeration operators Φ and Ψ.

Requirements:

global : (∀x, y ∈ ω<ω rA)[¬ xEy]

Na : a /∈ A or (∃x)[xEa ∧ x /∈ A]

RΦ,Ψ : A = Ψ(Φ(A)) =⇒ Φ(A) 6= Gf for any total function f : ω → ω

Clearly, our global requirement and the Na- and RΦ,Ψ-requirements will ensure
that A is of cototal (see Section 2.3) but not of graph-cototal enumeration degree.

Construction: We define a priority tree as follows: Each Na-strategy has only
one outcome, d. Each RΦ,Ψ-strategy has infinitely many possible outcomes: stop <
∞ < · · · < wait1 < wait0. We assign all nodes on a given level of the tree to the
same requirement, and every non-global requirement is associated to some level.
Finally, if the last coordinate in a ∈ ω<ω is k, then we ensure that the Na-strategy
does not appear in the first k levels of the tree.

The main difficulty in this construction is in performing the strategy for an
RΦ,Ψ-requirement while allowing lower-priority requirements to succeed. As we
will see, one R-requirement may restrain infinitely many elements into A, while
lower-priority requirements may need to extract some of these elements from A.

Let us describe the RΦ,Ψ-strategy for a node α on the priority tree. The strategy
has parameters xα, Fnα , Hn

α , ynα, znα, and Dn
α, whose meaning we now explain. The

goal of the strategy is to ensure that some column of Φ(A) is either complete or
misses two elements and thus cannot be the complement of the graph of a total
function. The parameter x is the column that the strategy uses. The superscript n
on the parameters F , H, y, z, and D refers to the values of these parameters under
the assumption that the true outcome of α is the outcome waitn. The parameter F
is a set that the strategy restrains in A, i.e., the strategy makes sure that no lower-
priority strategy removes any element of F from A. The set H ∪D is a finite set
that, if we remove it from A and all higher-priority restraints remain, will cause the
element 〈x, y〉 (for our parameter y) to be removed from Φ(A). H ∪D is partitioned
into two pieces as the two pieces will relate to other strategies in different ways. The
set H is comprised of elements that at some prior stage were restrained out of A
by strategies below some outcome waitm of α (except when α is initialized, when
H contains a single fresh element), and D is comprised of elements that at some
prior stage were restrained out of A by a strategy below the outcome ∞ of α. We
only extract the set H ∪D if we see some other number w such that we can also
ensure that 〈x,w〉 /∈ Φ(A). The number z is the least number other than y for which
we currently do not know that 〈x, z〉 ∈ Φ(A). We try to ensure that z increases
infinitely often, thus making the entire column contained in Φ(A), ensuring that
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Φ(A) cannot be the complement of the graph of a total function. The general idea
is that if it ever happens that we cannot increase z, i.e., we cannot put 〈x, z〉 into
Φ(A), then by removing H ∪D from A, we can ensure that two elements are missing
from the x-th column of Φ(A). In this case, as before, Φ(A) is not the complement
of the graph of a total function.

Step −1: Pick a (large) a0 with a−0 , a0 ∈ A and a0̂〈m〉 ∈ A for all m, and check,
using oracle 0′, if there are finite sets F and G (given by canonical indices) such
that

(2) a0 ∈ Ψ(G) and G ⊆ Φ(F ) and F ⊆ Ã,

where Ã is the set of those a for which there is no strategy γ � α or γ � α̂〈∞〉 that
currently restrains a out of A. If no such F and G exist, then the RΦ,Ψ-requirement
is trivially satisfied since a0 ∈ A but a0 /∈ Ψ(Φ(A)). In this case, place a restraint
keeping a0 ∈ A, place a restraint b /∈ A for any b for which some strategy γ � α̂〈∞〉
is currently restraining b /∈ A, and take outcome stop. As long as it is not initialized,
the strategy will never act again and when visited from now on will take outcome
stop. If we can find such F and G with a0 /∈ F , then we again take the outcome stop
and satisfy the RΦ,Ψ-requirement by removing a0 from A while ensuring F ⊆ A and
thus a0 ∈ Ψ(Φ(A)). Otherwise, possibly enlarge the finite set F so as to maximize
|G∩Φ(F r{a0})| for this fixed G. Fix any pair 〈x, y0〉 ∈ GrΦ(F r{a0}) (which is a
nonempty set by our assumption) such that for this fixed x, we have that y0 is least
such that 〈x, y0〉 ∈ Gr Φ(F r {a0}). Fix this x from now on as the parameter x.
Let s be the current stage. (Note, that we may assume that y0 < s by speeding up
the construction if necessary.) Let F 0 = F r {a0} and let H0 = {a0}, let D0 be the
set of all elements restrained out by some strategy extending α̂〈∞〉, and let z0

be the least number z other than y0 that is ≤ s such that 〈x, z〉 /∈ Φ(F 0), if such
a number exists; let z0 be s otherwise. We define F i = F 0, Hi = H0, Di = D0,
zi = z0 for all i ≤ s. Go to Step s. (This is to ensure that if α is initialized infinitely
often, then it visits each outcome waitn only finitely often.) We take outcome ∞.

Regardless of which outcome we took, we initialize all nodes that are strictly to
the right of the outcome we took.

Step n: Being in Step n means that n is largest such that Fn, Hn, Dn, yn,
and zn are defined. We say a node β is on the n-subtree if the length of β is strictly
less than n and for all γ � β, γ̂〈waitk〉 � β implies that k < n. Note that the
n-subtree is finite for every n. If β � α̂〈∞〉 and β is not on the n-subtree and
(when last visited) β did not take outcome stop, then we initialize β.

Let W be the set of elements restrained out of A by strategies above or to the left
of α. Let B∞ be the set of elements restrained out of A by nodes extending α̂〈∞〉
and let Bn be the set of elements restrained out of A by nodes extending α̂〈waitn〉
along with the elements that are in Hk

β ∪Dk
β for some k and some β � α̂〈waitn〉.

Let us say that a set Y ⊆ ω<ω is consistent if it does not contain any pair of
elements which are connected to each other. Using oracle 0′, we check if 〈x, zn〉 ∈
Φ(ω r (W ∪B∞ ∪ Y )) for all consistent subsets Y ⊆ Bn. If so, then we let X0 be a
finite set such that X0 is disjoint from W ∪B∞∪Bn and 〈x, zn〉 ∈ Φ(X0∪ (BnrY ))
for every consistent Y ⊆ Bn. We then redefine Fn to be Fn ∪X0, redefine zn to be
the least number z other than yn which is ≤ s (where s is the current stage) such
that 〈x, z〉 /∈ Φ(Fn), if such a number exists, and let zn be s otherwise. Leave all
other parameters the same, and take outcome waitn.
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If 〈x, zn〉 /∈ Φ(ω r (W ∪B∞ ∪ Y )) for some consistent set Y ⊆ Bn, then fix any
such set Y . We now check whether 〈x, zn〉 ∈ Φ(ωr (W ∪B∞)). If so, then we let X1

be some set disjoint from W ∪ B∞ such that 〈x, zn〉 ∈ Φ(X1). Define Hn+1 = Y ,
Dn+1 = B∞, yn+1 = zn, define Fn+1 = Fn ∪ (X1 r Y ) ∪Hn, and let zn+1 be the
least number z other than yn+1 that is ≤ s (where s is the current stage) such that
〈x, z〉 /∈ Φ(Fn+1), if such a number exists, and let zn+1 be s otherwise. (This means
that next time α is visited, it will be in Step n+ 1, unless it is reverted back to a
Step ≤ n.) We take outcome ∞.

If 〈x, zn〉 /∈ Φ(ωr(W∪B∞)), then we place a negative restraint so that (Hn∪Dn∪
B∞)∩A = ∅. For each γ such that γ̂〈∞〉 � α and such that (Hn∪Dn∪B∞)∩F kγ 6=
∅ or such that Hn ∪Dn ∪B∞ contains an element a that is the predecessor of an
element b ∈ Hk

γ ∪Dk
γ (i.e., b = â〈m〉 for some m), we undefine all of γ’s parameters

with superscript ≥ k. Note that γ now reverts to being in a smaller step, say Step `;
we say we have reverted γ to Step `. We also initialize all strategies below γ̂〈∞〉
which are not on the `-subtree and which (when last visited) did not take outcome
stop. We undefine all of α’s parameters (since α will not be reverted back to any
Step k, unless it is initialized) and take the outcome stop; unless initialized, we will
forever take the outcome stop from now on with no further action.

Regardless of which outcome we took, we initialize all nodes which are strictly to
the right of the outcome we took.

The behavior of an Na-strategy β is simple: When visited, if a ∈ Hn
α for a node α

with α̂〈∞〉 � β that is in Step n (i.e., n is largest so that Hn
α is defined), then

end the stage. (Here β believes that a will not remain in Hn
α and so simply waits.)

Otherwise, if a ∈ Dn
α for a node α with α̂〈∞〉 � β that is in Step n, or if a 6∈ A,

then do nothing and take the outcome d. (It will follow from the construction that
if β is on the true path and a ∈ Dn

α for a node α with α̂〈∞〉 � β at infinitely
many stages at which β is visited, then a 6∈ A.) If a ∈ A, then we pick a fresh
number m and place a restraint to prevent â〈m〉 from being in A. In that case, if
any γ � β is an RΦ,Ψ-strategy that (when last visited) did not take outcome stop,
then initialize γ.

Verification: We now show that our construction ensures the satisfaction of all
requirements.

Lemma 5.2. If α is a strategy that is reverted to Step n, it is because a node
β � α̂〈∞〉 that is on the (n+ 1)-subtree takes the outcome stop.

Proof. At the moment when Fn+1
α was last modified before the current moment, α

was in Step at most n + 1. At the moment when Hn+1
α and Dn+1

α were defined,
α was at most in Step n. In any case, all strategies extending α̂〈∞〉 that were
not on the (n+ 1)-subtree and had not yet taken outcome stop were initialized or
in initial state. We claim that if β � α̂〈∞〉 is not on the (n + 1)-subtree, then
(unless α is initialized) at no later stage will β have (Hk

β ∪Dk
β ∪B∞) ∩ Fn+1

α 6= ∅
or will Hk

β ∪Dk
β ∪ B∞ contain a predecessor of an element in Hn+1

α ∪Dn+1
α . We

prove this by induction on moments of the construction. At no later stage will
an Nc-strategy place a restraint that takes an element out of A that is in Fn+1

α

or that is the predecessor of an element in Hn+1
α ∪ Dn+1

α . This is because the
Nc-strategy extracts an element of the form ĉ〈m〉 where m is new, so it could not
have appeared in Fn+1

α or be a predecessor of an element in Hn+1
α ∪Dn+1

α . The
same is true for RΦ,Ψ-strategies that extract a new element because they take the
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outcome stop in Step −1, because this is also a new element. Now, any Hk
β or Dk

β

is formed from elements that are in H`
γ ∪D`

γ for γ � β, from elements restrained
out by Nc-strategies extending β, or from some {a0} proposed by an RΦ,Ψ-strategy
in Step −1 extending β. So, by induction, no H`

γ ∪D`
γ can contain an element in

Fn+1
α or an element that is the predecessor of an element in Hn+1

α ∪Dn+1
α , thus

neither can Hk
β ∪Dk

β . �

Lemma 5.3. If α is along the true path and is an RΦ,Ψ-strategy, and n ∈ ω, then
there are only finitely many stages at which α is reverted to Step n.

Proof. We prove the result by simultaneous induction on n for all strategies combined.
Suppose towards a contradiction that some strategy α on the true path is reverted
to Step n infinitely often. Since there are only finitely many elements in the
(n+ 1)-subtree below α̂〈∞〉, there must be some β doing this infinitely often. In
particular, α is on the (n+ 1)-subtree. Suppose in addition that α is the longest
strategy on the true path and in the (n + 1)-subtree that is reverted to Step n
infinitely often.

Every time β reverts α to Step n, it must take the outcome stop. To be initialized
infinitely often after taking outcome stop, it must be that we visit a node left of β
infinitely often, as this is the only way in which we initialize stopped strategies.
Since α is on the true path, there must be some shortest γ � α along the true path
which takes an outcome left of β infinitely often.

Case 1: γ is an R-strategy and β is below the outcome waitk of γ for some
k < n+ 1. It follows that α 6= γ, because β � α̂〈∞〉. Then to visit β again, γ must
be reverted to a step ≤ n infinitely often. By our choice of α and by the induction
hypothesis, this is impossible.

Case 2: γ is an R-strategy and β is below the outcome ∞ of γ. Then γ infinitely
often visits the outcome stop, but is initialized. Since we initialize a strategy that
has taken outcome stop only by visiting a node to the left of it, this contradicts our
choice of γ as a strategy on the true path.

Case 3: γ is an R-strategy and β is below the outcome stop of γ. Then γ cannot
take an outcome left of the outcome stop.

Case 4: γ is an N -strategy. This is impossible because N -strategies only have
one outcome. �

Lemma 5.4. Every strategy along the true path is initialized only finitely often.

Proof. For α to be initialized, either some node to its left is visited, or it is not in
the k-subtree and some node β̂〈∞〉 � α is in Step k, or some N -node above it
places a restraint. The first case happens only finitely often, since α is along the
true path. The second case happens only finitely often since, if α is on the `-subtree,
and along the true path, then each β with β̂〈∞〉 � α eventually is not reverted
to a step < `. The last case can only happen finitely often since, by the inductive
hypothesis, every node β ≺ α is initialized only finitely often. �

Lemma 5.5. For each node α, if Hk
α becomes defined at stage s, then for every

a ∈ Hk+1
α , the last number in the string a is > k, s.

Proof. For Hk
α to become defined at stage s, this requires α to take outcome ∞ at

stage s. Thus every strategy below α̂〈waitk〉 is initialized. Since before an element
can enter Hk+1

α , it must first be in H`
β ∪ D`

β for some β � α̂〈waitk〉 and some
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` ∈ ω, be restrained out of A by some N -strategy extending α̂〈waitk〉, or be in
some {a0} proposed by an RΦ,Ψ-strategy β in Step −1 with β � α̂〈waitk〉, we
see that it must be proposed by such a strategy at a stage ≥ s. Furthermore, the
number k has been mentioned. So, when β restrains an element a out of A, its last
number is new, thus greater than k and s. �

Lemma 5.6. If α is an R-strategy that first takes the outcome stop (since its last
initialization) at stage s, then there is no active node below α̂〈stop〉 at the beginning
of stage s.

Proof. Consider the stage s at which α last took the outcome stop. Let t > s be
the first time that α was initialized after stage s. Then this initialization must be
the result of visiting a node to the left of α, since this is the only way we initialize
stopped strategies. Thus any γ � α̂〈stop〉 would also be initialized. �

The following lemma ensures that at no stage of the construction do we take any
contradictory actions.

Lemma 5.7. At every moment of the construction, the following hold:

(a) No two different requirements place conflicting restraints on a string (i.e., it
is impossible that one restrains it in A and the other restrains it out of A,
where being restrained into A means being restrained in by Step −1 or being
in the current set F ).

(b) It is not the case that any Hn
α contains an element that is restrained out

of A.
(c) If a ∈ Dn

α, and either a is restrained out of A by β or a ∈ Hk
β , then

α̂〈stop〉 <L β.
(d) If a ∈ Hn

α ∪ Dn
α and a is restrained in A by β, and α 6= β, then either

α̂〈stop〉 <L β or β̂〈∞〉 � α.
(e) If a ∈ Dn

α and a ∈ Dm
β for α 6= β, then α � β̂〈∞〉 or β � α̂〈∞〉.

(f) If (n, α) 6= (m,β), then Hn
α ∩Hm

β = ∅.
(g) It is not the case that two different strategies restrain a out of A at the same

time.

Proof. We will show that all statements hold at all times. Consider the first moment
when one of the claims fails, and suppose that it is (a). Let α restrain a into A,
while β restrains a out of A.

Case 1: α placed its restraint first. Then β places its negative restraint in one of
two ways: Either β is an Nc-strategy for some c, or β is an RΦ,Ψ-strategy which
takes the outcome stop. In the first case, the Nc-strategy restrains an element of
the form ĉ〈m〉 where m is fresh, in particular ensuring that ĉ〈m〉 is not already
restrained in A. In the second case, the only new element restrained out by β
in Step −1 is a fresh element a0 which cannot happen for the same reason, or β
restrains out elements in Hn

β ∪Dn
β ∪B∞ (where β is in Step n). But a cannot be

in B∞, as otherwise, at the previous moment, we would have restrained a both in
and out of A. If a is in Hn

β ∪Dn
β , then this must have happened at a previous moment.

So by the inductive hypothesis, by (d), either β̂〈stop〉 <L α or β � α̂〈∞〉. In
the former case, we have that α is injured as β decides to restrain a out of A, thus
there is no conflict. In the second case, α is reverted to a previous Step k at which
a /∈ F kα , again showing there is no conflict.



28 ANDREWS, GANCHEV, KUYPER, LEMPP, MILLER, A. SOSKOVA, AND M. SOSKOVA

Case 2: β placed its restraint first. Then α is an RΦ,Ψ-strategy that adds a
to F , while β already restrains a out of A. We have three cases where this can
happen. First, if α is in Step −1, then by the definition of F 0 it can only be
that β � α̂〈waitk〉 for some k ∈ ω. However, then β is initialized, because α has
outcome stop or ∞, both to the left of waitk, so there is no conflict. Otherwise,
either α remains in Step n and increases F by including X0, or α moves to Step
n+ 1 and defines Fn+1 to be Fn ∪ (X1 r Y ) ∪Hn. In the former case, since X0 is
explicitly chosen to be comprised of elements that are not restrained out of A by
any strategy at all, we see that a cannot be added to Fn at this moment. In the
latter case, Hn is disjoint from anything restrained out of A by (b). Suppose we
then have a ∈ X1 r Y . Then it is either in X1 r Bn and thus not restrained out
of A by any strategy, or it is in Bn. If it is in Bn, then it is either in Hk

γ or Dk
γ

for some γ extending α̂〈waitn〉 or is restrained out of A by such a γ. In the first
case, this contradicts (b). In the second case, we would have γ̂〈stop〉 <L β by (c),
thus α̂〈∞〉 <L β and β is initialized when α places a into Fn+1

α . In the third case,
either a is restrained out of A by two different strategies at a previous moment,
contradicting (g), or γ = β and β is initialized when α takes outcome ∞.

Suppose the first moment where any of the claims fails is one where (b) fails,
i.e., a appears both in Hn

α and is restrained out of A by a node β.
Case 1: α placed a into Hn

α first. Then β places its negative restraint in one of
two ways: Either β is an Nc-strategy for some c, or β is an RΦ,Ψ-strategy that
takes the outcome stop. In the first case, the Nc-strategy restrains an element of
the form ĉ〈m〉 where m is fresh, in particular ensuring that ĉ〈m〉 is not already
in Hn

α . In the second case, the only new element restrained out in Step −1 is a
fresh element, which we have just mentioned does not cause a conflict, or we have
a ∈ Hm

β ∪Dm
β ∪B∞ where β is in Step m, and β takes the outcome stop. If a ∈ B∞,

then a was previously restrained out of A, which is a contradiction. If a ∈ Hm
β , then

we would have Hm
β ∩Hn

α 6= ∅ at a previous moment, contradicting (f). If a ∈ Dm
β ,

then by (c), β̂〈stop〉 <L α, and so α is initialized when β restrains a out of A; thus
there is no conflict.

Case 2: β restrains a out of A first and α places a into Hn
α at the current moment.

If α is in Step −1 then H0 contains only one element, chosen as a fresh number
by α and hence not restrained by β. It follows that α is in Step n− 1 ≥ 0 and a
must have either been restrained out of A by some strategy γ � α̂〈waitn−1〉 or
must have been in Hk

γ ∪Dk
γ for some γ � α̂〈waitn−1〉. It would violate (b) for a

to be in Hk
γ at the previous moment, and if a ∈ Dk

γ at the previous moment, then
by (c), we would have γ̂〈stop〉 <L β, so α̂〈∞〉 <L β and β is initialized when a
is added into Hn

α . So suppose γ restrains a out of A. When we define H anew for α,
we take the outcome α̂〈∞〉, thus injuring this γ. Thus if β = γ, then we have
that β has relinquished its restraint, and if β 6= γ, then at the previous moment, β
and γ restrained the same element out of A, violating (g) at the previous moment.

Suppose the first moment where any of the claims fails is one where (c) fails,
i.e., suppose a ∈ Dn

α and a is restrained out of A by β or is contained in Hk
β while

α̂〈stop〉 6<L β.
Case 1: α places a into Dn

α first. Suppose a is restrained out of A by β. Again,
this cannot happen if β is an N -strategy. Suppose β is an R-strategy that takes the
outcome stop in Step −1. Then the only new element restrained out is fresh, so a
must have already been restrained out of A by some γ � β. Then α̂〈stop〉 <L γ,
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so either α̂〈stop〉 <L β or β � α � γ. Furthermore, α cannot be below β̂〈stop〉,
because the last time β was initialized, so were all non-stopped R-strategies below
it, and hence Dn

α for such an α is empty. So, if β � α � γ, then when β takes
the outcome stop, α is initialized and there is no conflict. Now, suppose we have
a ∈ Hk ∪ Dk ∪ B∞ for β. If a ∈ Hk, we have that α̂〈stop〉 <L β, by (c) at
the previous moment. If a ∈ Dk, then by (e) at the previous moment, either
α � β̂〈∞〉 or β � α̂〈∞〉. In the first case, when β restrains a out of A, it takes
the outcome stop, injuring α, while in the second case, α̂〈stop〉 <L β. If a ∈ B∞,
then at the previous moment, we had a restrained out of A by some γ � β̂〈∞〉.
Thus α̂〈stop〉 <L γ, by (c) at the previous moment. Either α̂〈stop〉 <L β or
β̂〈∞〉 � α (noting that, if α = β, we would undefine Dn

α when β takes the outcome
stop). In the latter case, when β restrains a out of A, it takes the outcome stop,
injuring α.

Now, suppose α places a into Dn
α first and at the current moment a enters

Hk
β . It cannot be that β is in Step −1 as the only element that enters H0 is a

fresh number, hence different from a. It follows that β is in step k − 1 ≥ 0 and
at the previous moment, a was either in H`

γ ∪ D`
γ for some γ � β̂〈waitk−1〉 or

was restrained out of A by some γ � β̂〈waitk−1〉. If it was in H`
γ or restrained

out of A by γ, then by (c) at the previous moment, α̂〈stop〉 <L γ. Thus either
α̂〈stop〉 <L β, β̂〈waitk−1〉 � α, or α = β. In the second case, when β adds a
to Hk, it initializes α, avoiding conflict. If α = β and n < k, then a must have
been proposed by some strategy δ � α which is an N -strategy or an R-strategy
which took the outcome stop at Step −1 at some stage after a entered Dn

α, which
contradicts freshness. If α = β and n = k, then both events really happen at the
same time, and by definition of Dn

α, a was restrained out at the previous moment
by a strategy δ � α̂〈∞〉, which would contradict (b). Lastly, suppose a was in D`

γ

for γ � β̂〈waitk−1〉. Then by (e), α � γ̂〈∞〉 or γ � α̂〈∞〉. If α � β̂〈waitk−1〉,
then when β takes the outcome ∞ to place a into Hk

β , α is initialized. So, we may

suppose rather that α̂〈∞〉 � β � γ. Thus α̂〈stop〉 <L β.
Case 2: β restrains a out of A or places a into Hk

β first. If α = β these events
really occur at the same time, and we already discussed this situation in the previous
case. So, let us assume α 6= β. When a joins Dn

α, Dn
α is defined to be the set of

elements restrained out of A by nodes extending α̂〈∞〉. Thus at the previous
moment, β restrains a out of A, and hence β is below α̂〈∞〉 by (g) or a was in Hk

β ,

and it was restrained out of A by some node γ � α̂〈∞〉, contradicting (b). It
follows that α̂〈stop〉 <L β.

Consider the first moment when one of the claims fails, and suppose that it is (d).
Let a ∈ Hn

α ∪Dn
α be such that a is restrained in A by some node β.

Case 1: a is placed into Hn
α ∪Dn

α first. Then β cannot be left of α, as otherwise α
would be initialized. Furthermore, α cannot currently be in the outcome stop,
otherwise Hn

α would be undefined. Thus, α̂〈stop〉 <L β or β � α. If β̂〈waitm〉 �
α, then it must be that β is in step m and expands the definition by adding X0

to Fm. Indeed, if β is in Step −1 it has outcome stop or ∞, initializing α; if β is in
Step k < m then β was reverted to a smaller step l ≤ k after α placed a in Hn

α ∪Dn
α

and then initialized all strategies that are not on the l-subtree and that had not yet
stopped, including α; if β is in Step k > m or if β is in Step m and defines Fm+1

then it will have outcome to the left of α at this moment. The set X0 added to Fm

is disjoint from Hn
α ∪Dn

α for any α � β̂〈waitm〉, so a is not in X0. The strategy α
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cannot be below β’s outcome stop, as β cannot restrain any elements in A after α
was first accessible unless it is initialized and then α would be initialized as well.
Thus, the only possibility left is β̂〈∞〉 � α, as desired.

Case 2: a is restrained in A by β first. For a to enter Hn
α ∪ Dn

α, it must have
already been either restrained out of A by some strategy below α, or α is in Step −1
and a = a0, or it must have been in Hk

γ ∪Dk
γ for some γ below α̂〈waitn〉. In the

first case, this contradicts (a). The second case contradicts the freshness of a0. So
suppose a was in Hk

γ ∪Dk
γ , and we have either γ̂〈stop〉 <L β or γ � β̂〈∞〉 by (d)

at a previous moment . In the first case, we then also have α̂〈stop〉 <L β. In the
second case, either α � β̂〈∞〉 or α � β � γ. In the former case, we have what the
claim allows, and in the latter case, again α̂〈stop〉 <L β.

Consider the first moment when one of the claims fails, and suppose that it is (e).
Let a ∈ Dn

α ∩Dm
β for α 6= β. For a to be in Dn

α, some strategy γ1 below α̂〈∞〉 that
is an N -strategy or R-strategy in Step −1 must have at some point proposed a into
the construction. Similarly, for a to be in Dm

β , some strategy γ2 below β̂〈∞〉 that
is an N -strategy or R-strategy in Step −1 must have, at some point proposed a in
the construction. Now, since in both cases the strategy proposes a fresh element,
it is impossible that γ1 6= γ2. Thus γ = γ1 = γ2 is below both α̂〈∞〉 and β̂〈∞〉,
showing that either α � β̂〈∞〉 or β � α̂〈∞〉.

Consider the first moment when one of the claims fails, and suppose that it is (f).
Let a ∈ Hn

α ∩Hm
β . Without loss of generality, Hm

β is the one defined at this moment.
Again, it cannot be that β is in Step −1 by freshness of a0, so β is in Step m−1 ≥ 0.
Then some strategy γ below β̂〈waitm−1〉 either previously had a ∈ Hk

γ ∪Dk
γ , or

was previously restraining a out of A. If a was in Hk
γ or γ was restraining a out

of A, we would already contradict (f) or (b), unless (n, α) = (k, γ). However, if
α = γ, then we have that α � β̂〈waitm−1〉, and hence when β defines Hm

β and

takes the outcome ∞, it initializes α. Finally, assume a ∈ Dk
γ . Then, by (c),

γ̂〈stop〉 <L α. But β̂〈∞〉 <L γ̂〈stop〉 <L α, so again, when β defines Hm
β and

takes the outcome ∞, it initializes α.
Consider the first moment when one of the claims fails, and suppose that it is (g).

Let α and β both restrain a out of A, and let us assume that α places its restraint
first.

Case 1: β is an Nb-strategy. Then since β restrains an element out of A of the
form b̂〈m〉 where m is fresh, it cannot restrain a out of A if it is already restrained
out of A.

Case 2: β is an RΦ,Ψ-strategy. Suppose a is restrained out of A by β in Step −1.
Then since a is not fresh, it must have been restrained out of A by some γ � β not
below the outcome stop. By (g), γ = α. Thus, when β takes the outcome stop, α is
initialized, so there is no conflict. Thus, at the previous moment, a ∈ Hn

β ∪Dn
β ∪B∞.

If a ∈ Dn
β , then by (c), we have β̂〈stop〉 <L α. Thus, when β takes the outcome

stop, it initializes α, showing that there is no conflict. It is impossible that a ∈ Hn
β

by (b). If a is in B∞, then some strategy γ below β̂〈∞〉 restrains a out of A.
By (g) at the previous moment, we have that α = γ � β̂〈∞〉. So again, when β
takes the outcome stop, α is initialized, showing that there is no conflict. �

Lemma 5.8. The set A is ∆0
2(0′). That is, for every a, there is a stage t such that

a ∈ A at every moment after stage t or a /∈ A at every moment after stage t.
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Proof. Every restraint of a number a being out of A begins with the introduction
of a by an N -strategy or an R-strategy in Step −1. If this never happens for a,
then we have a ∈ A at every moment of the construction.

Suppose some γ introduces a. If γ is never initialized and it restrains a out of A,
then a /∈ A for every moment after this restraint is placed. If γ is an R-strategy
and a ∈ H0, but γ is never initialized and never restrains a out of A, then by
Lemma 5.7(b) no other strategy does either, so a ∈ A at every moment after a is
introduced.

Otherwise, let s be a stage such that γ is initialized before stage s. After γ
introduces a, no N -strategy or R-strategy in Step −1 can re-introduce a by freshness.
At stage t ≥ s, a may be in Hn

β ∪ Dn
β for some β � γ and some n ∈ ω. Let Zt

be the set of such β. Furthermore, let Ut be the set of β � γ that restrain a out
at stage t. It follows by Lemma 5.7(g) that at all times, Ut contains at most one
element. If at stage t ≥ s, the set Ut = {βt}, then by Lemma 5.7(b) and (c), Zt
contains only strategies α that would initialize βt if they had outcome stop, in
particular, strategies only of higher priority than βt, i.e., above or to the left of βt.
If at a stage t ≥ s, a enters Hn

α ∪Dn
α for α /∈ Zt−1 then it does so in one of two

ways: by joining Hn
α if there is a β ∈ Zt−1 ∪ Ut−1 such that α̂〈waitn−1〉 � β, in

which case this β is initialized and hence leaves Zt ∪ Ut, or by joining Dn
α if there

is a β ∈ Ut−1 with β � α̂〈∞〉. In both cases, the minimum priority of strategies
in Zt−1 does not decrease, while Zt ∪ Ut only contains nodes that are (possibly
non-proper) initial segments of nodes in Zt−1 ∪ Ut−1.

If at stage t, the strategy β enters Ut, then it must be that β takes the outcome
stop and β ∈ Zt−1. As we argued above, at every stage t we have that Zt ∪ Ut
only contains nodes that are initial segments of nodes in Zt−1 ∪ Ut−1. So, there
are only finitely many possibilities for Ut. Furthermore, as also argued above, it
follows that if the strategy that restrains a out of A changes between stages t1 < t2,
then the strategy restraining a out at stage t1 has lower priority than the strategy
restraining a at stage t2. Therefore, let t > s be a stage at which Ur = Ut for all
r > t. If Ur is empty, then a ∈ A at every moment after t, and if it is not, then
a /∈ A at every moment after t. �

Lemma 5.9. If β is an Na-strategy along the true path, then β ensures that Na is
satisfied.

Proof. Let β be an Na-strategy along the true path. By Lemma 5.4, let s be a stage
at which β is visited and such that no γ � β is ever initialized at a stage t ≥ s.
Furthermore, let s be large enough such that, if α̂〈∞〉 � β, then α will never be in
Step k for k ≤ a(|a| − 1). Then it follows from Lemma 5.5 that at any stage t ≥ s,
a /∈ H`

α for any node α such that α̂〈∞〉 � β with α in Step `. If, at any stage
t > s when β is visited, we have both a /∈ D`

α for all nodes α such that α̂〈∞〉 � β
with α in Step `, and a ∈ A, then β will place a permanent restraint, ensuring that
â〈m〉 /∈ A for some fresh m. On the other hand, if at stage t we have a ∈ D`

α

for some node α as in the previous sentence, then at the last stage r < t when we
visited α, we defined D`

α to only contain elements that are restrained out at that
moment. Thus, if β fails to place a permanent restraint, then a /∈ A at infinitely
many moments when β is visited; thus a /∈ A follows by Lemma 5.8. �

Lemma 5.10. Let a be a string restrained out of A at stage t. Then all successors
of a that are introduced by stage t can never again be restrained out of A.



32 ANDREWS, GANCHEV, KUYPER, LEMPP, MILLER, A. SOSKOVA, AND M. SOSKOVA

Proof. Towards a contradiction, suppose that some successor b of a that was already
introduced at stage t is restrained out of A at some later stage s > t. When we
introduce a number, we always select it as a new number. It follows that a cannot
be introduced after b, so b is introduced by an Na-strategy δ after a is introduced
and at a stage r < t when a is in A. Since a has been introduced and will eventually
be restrained out of A, it must be hiding in Hn

γ ∪Dn
γ for some strategy γ of higher

priority than δ. At stage t, the string a is restrained out of A by some R-strategy
β � γ that takes the outcome stop. At this stage, the strategy δ is initialized,
so the only way in which b can be restrained out of A at stage s > t is if it, in
turn, is hiding at stage t in Hk

α ∪ Dk
α for some R-strategy α of higher priority

than β. Furthermore, as β is not initialized at any stage in the interval (r, t] and α
was visited at a stage q in that interval (when it defined Hk

α ∪ Dk
α), β must be

an extension of α. If β � α̂〈∞〉, then at stage t the strategy β reverts α to a
previous Step l such that H l

α ∪Dl
α does not contain any successors of a. Otherwise,

β � α̂〈waiti〉, for some i. But then at the stage q < t at which b entered Hk
α ∪Dk

α

the strategy α had outcome ∞, initializing β, γ and all other strategies that could
be protecting a, so a could not be restrained out of A at stage t. This gives us the
desired contradiction. �

Lemma 5.11. At no moment are there any two strings that are edge-related and
both restrained out of A. Furthermore, if α is an RΦ,Ψ-strategy that is currently in
Step n, then at any moment we have that, if a, b ∈ B∞ ∪Hn

α ∪Dn
α ∪Bn and a and b

are edge-related, then a, b /∈ B∞ and a /∈ Hn
α ∪Dn

α or b /∈ Hn
α ∪Dn

α.

Proof. We prove these two facts simultaneously by induction on moments. Let us
first consider the first claim. Suppose towards a contradiction that two strings a
and b are edge-related and both restrained out of A. Let α restrain a and β restrain b
out of A, and suppose α places its restraint first (or α = β thus α and β place their
restraint simultaneously).

Case 1: β is an Nc-strategy. Then β restrains an element out of the form ĉ〈m〉
where m is fresh. Thus, it is impossible that a is a successor of ĉ〈m〉. So, the only
possibility is that a = c, but then β would not restrain any element out of A at all,
since c /∈ A when β is visited.

Case 2: β is an RΦ,Ψ-strategy that takes the outcome stop. If β restrains b out
in Step −1, then a and b are not edge-related by construction. So, at the previous
moment, a was restrained out of A by α and b was either in Hn

β , or it was in Dn
β

or B∞. If α = β, then a and b were restrained out at the same time, since an
RΦ,Ψ-strategy only places a negative restraint when it takes the outcome stop. Thus
from the second claim at the previous moment it now follows that a and b are not
edge-related.

Next, let us assume that α 6= β. Suppose b ∈ Hn
β . Then since α is not initialized

by β taking outcome stop, we can conclude that either α ≺ β or α <L β. Either
way, α has not acted since β and all R-strategies below β that have not yet stopped
were initialized. (If α is an N -strategy, then when it acted, it would have initialized β
unless it had already stopped, in which case it must have been initialized since then
in order to stop again. If α is an R-strategy, then it places a negative restraint
by taking the outcome stop, so β was either initialized then for being right of the
outcome stop or is below the outcome stop and was first visited then.) Consider
the moment t at which α acted to take a out of A. At that moment, no R-strategy
below β had any parameters, unless already in outcome stop. Thus, for b to be
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in Hn
β now and not out of A at stage t, it was, at some stage r > t, restrained out

of A by an N -strategy or introduced by an R-strategy in Step −1 below β. The
second case cannot happen, because we explicitly pick a b which is not connected
to a. Thus, at some stage, we had an N -strategy restraining an element that is
edge-related to an element not in A, which is impossible by Case 1.

Finally, suppose b ∈ Dn
β ∪ B∞. By the same argument as for the Hn

β -case, Dn
β

and B∞ contain elements restrained out of A by some γ below β at some stage.
But since all R-strategies below β were initialized since α last acted, we see that at
some stage since then, we must have had an N -strategy below β restraining b out
of A, giving a contradiction as in Case 1.

Next, let us consider the second claim. Assume that a, b ∈ Zα = B∞ ∪ Hn
α ∪

Dn
α ∪Bn and that a and b are edge-related. Let us assume that a entered Zα first,

and that b just entered Zα. We now have several cases.
First, if b enters Hn

α ∪Dn
α, then the strategy α is currently moving from Step

n − 1 to Step n, b is a member of B∞ ∪ Bn−1 at the previous moment, and Bn
is empty. In particular, Zα at the current moment contains only elements from
B∞ ∪ Bn−1, as Dn

α = B∞ and Hn
α ⊆ Bn−1. Since a ∈ Zα at the current moment,

it follows that a ∈ B∞ ∪ Bn−1 at the previous moment as well. Thus, by the
induction hypothesis, a, b ∈ Bn−1, and therefore by construction, we can only have
that a, b ∈ Hn

α . However, we explicitly defined Hn
α to not contain any edge-related

elements.
Next, if b enters B∞, it means that we last took the outcome ∞ and so Bn = ∅

once again. It cannot be that a ∈ B∞, by the first claim at the current moment,
which we have just proven. So a ∈ Hn

α ∪ Dn
α. It follows that, no Na-strategy

β � α̂〈∞〉 acts, and hence b cannot have been restrained out for this reason.
Suppose that b is restrained out by an R-strategy β � α̂〈∞〉 taking outcome stop
at the current stage s. If a is the successor of b, then β would revert the strategy α
to a Step l such that a /∈ H l

α ∪Dl
α and so a /∈ Zα at the current moment. It follows

that b is the successor of a and b was introduced by an Na-strategy δ extending β
at an earlier stage r < s when a was already introduced but not restrained out of A.
At stage r, the strategy α was in a previous step k < n. This means that a ∈ Dn

α, as
the elements of Hn

α are introduced after stage r by strategies extending α̂〈waitn−1〉
and all these strategies are initialized at stage r. In order for a to enter Dn

α, it must
be restrained out of A when Dn

α is defined at stage t such that r < t < s. But then
by Lemma 5.10 it follows that b cannot be restrained out of A at stage s.

Finally, let us assume b enters Bn. Then it has to be introduced by some node
β � α̂〈waitn〉, since otherwise it was already in Bn at the previous moment. Now,
by freshness, the only reason it can be connected to a is if b− = a and a is currently
not restrained out. Thus, a /∈ B∞. �

Lemma 5.12. Let α be an RΦ,Ψ-strategy along the true path. For all n ∈ ω and at
any moment, for all w < znα, either w = ynα or 〈x,w〉 ∈ Φ(Fnα ).

Proof. Note that this is true when we first enter Step 0, since z0 is selected as the
least z other than y0 such that 〈x, z〉 /∈ Φ(F 0

α). This statement is preserved when we
revert back to a previous step (since it holds for the previous step). This statement
is also preserved when we stay in the same step and increase F and z: We have one
new value of w to consider, the old value of z. But we add X0 to F to ensure that
〈x,w〉 ∈ Φ(F ). Similarly, this statement is preserved when we move to a new step;
this is guaranteed by the choice of zn+1. �
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Lemma 5.13. If α is an RΦ,Ψ-strategy along the true path, then α ensures that
RΦ,Ψ is satisfied.

Proof. Let s be large enough so that α is never initialized after stage s. After
stage s, at the first time at which α is visited, if it fails to find sets F and G in
Step −1, then it places a finite restraint a0 ∈ A and it restrains out of A elements
that were already restrained out of A by nodes below α that are not below the
outcome stop of α, which is never injured. Note that any node � α or <L α that
is currently restraining an element out of A will permanently do so, since the only
way to injure this node is to visit some node to its left, which would injure α again
as well. Thus the true set A is a subset of the set A that α looks at when it sees
that a0 /∈ Ψ(Φ(A)). Thus a0 ∈ A rΨ(Φ(A)), and the requirement is satisfied. If
it finds sets F and G with a0 /∈ F , then again, it places a finite restraint a0 /∈ A,
F ⊆ A, and the requirement is permanently satisfied since a0 ∈ Ψ(Φ(A))rA.

Now, suppose that the true outcome of α is waitn for some n. Let s also be large
enough such that after stage s, α is never reverted to any Step k with k ≤ n. It
follows that α never takes an outcome to the left of waitn after stage s. Thus, in
the algorithm, we always have 〈x, zn〉 ∈ Φ(ω r (W ∪B∞ ∪ Y )) for every consistent
set Y ⊆ Bn. In particular, this is true for Y = (ωrA)∩Bn because Y is consistent
by Lemma 5.11. Furthermore, the algorithm then replaces Fn by Fn ∪X0, which
ensures that 〈x, zn〉 ∈ Φ(X0 ∪ (Bn r Y )) ⊆ Φ(A). Thus, for all z 6= yn (which never
changes after stage s), we have that 〈x, z〉 ∈ Φ(A). Next, by Lemma 5.7(b), we see
that no element of Hn (which never changes after stage s) is ever restrained out
of A by any strategy, thus Fn ∪Hn ⊆ A, so 〈x, yn〉 ∈ Φ(A), showing that the entire
x-th column is contained in Φ(A), so RΦ,Ψ is satisfied.

Next, suppose that the true outcome of α is ∞. Fix any k ∈ ω; we argue that
[0, k] ⊆ Φ(A)[x]. Let t > s be a stage at which α̂〈∞〉 is visited and which is large
enough so that α is never reverted to Step n for n ≤ k + s+ 1 after stage t. Then,
since every time the step is increased, y is increased as well, it follows that at every
stage after t, if α is in Step n, then zn > ynα ≥ n− s. By Lemma 5.12, and since at
every future stage, α restrains Fnα into A, we see that [0, k] ⊆ Φ(A)[x]. Since this
holds for every k, we have that every element of the x-th column is contained in
Φ(A), thus RΦ,Ψ is satisfied.

Finally, suppose that the true outcome of α is stop and it is achieved via Step n.
Let t > s be a stage at which α takes outcome stop and no higher-priority strategy
is ever initialized after stage t. Then α places a restraint keeping Hn ∪Dn ∪B∞
out of A which is never lifted. Since no higher-priority strategy is initialized, every
element of W is permanently restrained out of A and W has remained the same
since α’s last initialization. Thus A ⊆ ω r (W ∪ B∞). This outcome means that
〈x, z〉 /∈ Φ(ω r (W ∪ B∞)), thus 〈x, z〉 /∈ Φ(A). Furthermore, since Hn ∪ Dn is
restrained out of A, we have 〈x, y〉 /∈ Φ(A). Thus, RΦ,Ψ is satisfied. �

This completes the proof of the theorem. �

6. Open questions

In this section, we collect the open questions arising from this paper, some of
which have already been asked.

6.1. Definability. As mentioned above, Kalimullin [10] showed that the enumera-
tion jump is first-order definable. Is this also true for the skip?
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Question 6.1. Is the skip first-order definable in the enumeration degrees?

Furthermore, we have discussed several cototality notions in this paper. Which
of these are definable?

Question 6.2. Which cototality notions are first-order definable in the enumeration
degrees?

Note that a positive answer to the first question would imply, by Proposition 1.1,
that the cototal degrees are definable.

6.2. Arithmetical zigzag. In Section 3.2, we have shown that the skip can exhibit
a zigzag behavior : There are degrees a such that none of the finite skips of a are
total. However, the examples constructed there are not arithmetical. We suspect
that this is not a coincidence.

Conjecture 6.3. If a is an arithmetical enumeration degree, then a〈n〉 is total for
some n ∈ ω.

6.3. Skip cototality. Let us say that a set A is skip cototal if A♦ has total degree.
Notice that every skip cototal set A is weakly cototal, and that every cototal
set is skip cototal. Furthermore, note that in the proofs of Proposition 4.4 and
Corollary 4.6, we in fact constructed a degree a that is skip cototal but not cototal.

Conjecture 6.4. Every weakly cototal set A is skip cototal, i.e., A♦ has total
degree.

As mentioned above, every Π0
2-set is weakly cototal. Therefore, a proof of our

conjecture would in particular imply that the skip of every Π0
2-set has total degree,

which is also open.
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