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Abstract. In this paper, we show that the so-called “double bubbles” are not
downward dense in the d.c.e. degrees.

1. Introduction

In this paper, we study a fundamental structural property of the d.c.e. degrees.
The d.c.e., and more generally the n-c.e., sets and degrees were introduced by
Putnam [13] and Gold [8] as a generalization of the c.e. sets and degrees. A set A is
n-c.e. if it has an approximation that can change the value of A(x) at most n times
for every natural number x, starting with x /∈ A. When n = 1, we obtain the c.e.
sets, and when n = 2, we obtain the difference of c.e. sets—the d.c.e. sets. Later on,
this hierarchy was extended by Ershov [5, 6, 7] to arbitrary computable ordinals.
The difference hierarchy gives rise to a corresponding nested hierarchy of degree
structures, all contained in the ∆0

2-Turing degrees. Naturally, one wonders if these
structures are different. Lachlan showed that every nonzero n-c.e. degree bounds
a nonzero c.e. degree, thus the structures of the n-c.e. degrees are different from
that of the ∆0

2-degrees, which contains minimal elements. Lachlan’s proof relies on
a particular set that is fairly easy to define: If A is d.c.e. and {As}s<ω is a d.c.e.
approximation to A, then the Lachlan set L(A) is the c.e. set of stages s at which
some element x enters A which then later leaves A.

Next, Arslanov [1] found an elementary difference between the structures of the
c.e. degrees and the d.c.e degrees: Cooper and Yates (see [3], [12]) had constructed
a noncuppable nonzero c.e. degree, whereas Arslanov [1] showed that every nonzero
d.c.e. degree is cuppable. Downey [4] found a further difference between the two
structures: He showed that the diamond can be embedded into the d.c.e. degrees, in
contrast to the Lachlan Non-Diamond Theorem for the c.e. degrees [10]. Downey’s
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work lead him to conjecture that for every n,m > 1, the structures of the n-c.e.
degrees and the m-c.e. degrees are elementarily equivalent.

Arslanov, Kalimullin and Lempp [2] disproved this conjecture. They showed that
the structure of d.c.e. degrees contains special pairs of degrees which they informally
called a double bubble. They used this notion and a generalization of this notion to
the 3-c.e. degrees to refute Downey’s Conjecture by showing that the partial orders
of the d.c.e. and the 3-c.e. Turing degrees are not elementarily equivalent. A pair
of d.c.e. degrees d1 > d2 > 0 forms a double bubble if all d.c.e. degrees below d1

are comparable with d2. We call d2 the middle of the bubble and d1 the top of the
bubble. Double bubbles play an important role in the study of the properly d.c.e.
degrees. They have many nontrivial properties and have sparked a lot of interest.
It is easy to see, by relativizing the Sacks Splitting Theorem [14], that the top of
a bubble must always be properly d.c.e. On the other hand, it was shown in [2]
that the middle is always a c.e. degree. A more elaborate property is related to the
notion of an exact d.c.e. degree. Exact degrees were introduced and first studied
by Ishmukhametov [9]; a d.c.e. degree d is called exact if all Lachlan sets of d.c.e.
members of d have the same degree. It follows from [2] that the top of every bubble
is an exact degree and the middle of the bubble is the degree of the Lachlan set of
any member of the top of the bubble (a proof can be found, e.g., in [16]).

Liu, Wu and Yamaleev [11] investigated the possibility of combining the construc-
tion of a double bubble in the d.c.e. degrees with other properties, such as upward
and downward density in the c.e. degrees. They noted that a positive answer to
the full density question would allow us to define the c.e. degrees within the d.c.e.
degrees.1 If d is a properly d.c.e. degree and d1,d2 form a nontrivial splitting of d
in the d.c.e. degrees, then at least one of the intervals (d1,d) or (d2,d) must be
free of c.e. degrees and hence bubbles, otherwise d would be c.e. On the other hand,
if every nonempty interval of c.e. degrees contained a bubble, then, by the Sacks
Splitting Theorem, every nonzero c.e. degree c would have a nontrivial splitting
c1, c2, such that both intervals (c1, c) and (c2, c) contain a bubble. Liu, Wu and
Yamaleev [11] showed that exact degrees are downward dense in the c.e. degrees and
left the downward density of double bubbles as an open question. In this paper, we
show that double bubbles are not downward dense in the d.c.e. degrees. Of course,
it suffices to show that double bubbles do not necessarily exist below any nonzero
c.e. degree:

Theorem 1.1. There exists a c.e. degree a such that there are no d.c.e. degrees
d2 < d1 ≤ a which form a double bubble in the d.c.e. degrees.

The rest of this paper is devoted to the proof of this theorem. Our notation
and terminology is standard and generally follows Soare [15]. We also use standard
notation and terminology for priority constructions.

2. Strategies

2.1. Requirements. Recall that the top of a double bubble is always an exact
degree. We will give a more formal definition of what this means. Fix a d.c.e.
set D and a d.c.e. enumeration {Ds}s∈ω of D. For technical reasons, we will assume
from now on that at any stage, any set D changes at at most one number, thus

1In fact, this idea goes back to Arslanov, who noted it in private communication with Shore.
Later, he publicized this idea in conference talks.
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|Ds4Ds−1| ≤ 1 for any s ∈ ω. We define the partial computable function sD(x) as
the stage of entry of x into D, i.e., sD(x) ↓= s is defined if x is enumerated into D
at stage s. If x is never enumerated into D then sD(x) ↑. The Lachlan set of D
with respect to the enumeration {Ds}s<ω is defined as

L(D) = {s | (∃x)(sD(x) ↓= s & x 6∈ D)}.

Although it may not be immediately obvious from the definition, every Lachlan set is
c.e. This follows from the fact that it is defined with respect to a d.c.e. approximation
and so ‘x /∈ D’ can be substituted by ‘(∃t > s)(x /∈ Dt)’. Furthermore, it is not
difficult to see that the degree of L(D) does not depend on the particular choice of
a d.c.e. approximation for D.

If d = deg(D) is a d.c.e. degree, then the set of Lachlan degrees of d is the set

L[d] = {deg(L(B)) | B ∈ d and B is d.c.e.}.

A d.c.e. degree d is exact if |L[d]| = 1.
Fix a double bubble d1 > d2 > 0. If D ∈ d1 is d.c.e., then L(D) ∈ d2. So in order

to prove the theorem, we must construct a noncomputable c.e. set A such that for
any noncomputable d.c.e. set D ≤T A, if 0 < deg(L(D)) < deg(D), then there is a
d.c.e. set E ≤T D that is Turing incomparable with L(D). Fix a computable listing
of all tuples 〈Φ,Ψ,Θ,Ω, D〉 of partial computable functionals Φ,Ψ,Θ,Ω and d.c.e.
sets D. It suffices to build a c.e. set A satisfying the following list of requirements:

PΘ : A 6= Θ;

RΦ,D : D = ΦA ⇒
∃E ∃ΛΦ,D (E = ΛDΦ,D ∧ E |T L(D)) ∨D ≤T L(D) ∨ L(D) ≤T ∅,

where each R-requirement has its own infinite list of subrequirements:

TΨ : E = ΨL(D) ⇒ ∃ΓΨ (D = Γ
L(D)
Ψ );

SΩ : L(D) = ΩE ⇒ ∃∆Ω (L(D) = ∆Ω) ∨ ∃ΓΩ (D = Γ
L(D)
Ω ).

(We will usually suppress the subscripts on the functionals above when they are
clear from the context.) We will construct A using a tree of strategies and the
gap/co-gap method. The proof will be a 0′′′-priority argument. We will first describe
the intuition behind the construction, starting with each strategy in isolation.

2.2. Strategies in isolation. Recall our convention that at every stage, any of
the given sets can change at at most one element.

The basic P-strategy. The basic P-strategy is a variant of the standard Friedberg–
Muchnik strategy. We choose a fresh witness a, wait for a stage s such that
Θ(a)[s] ↓= 0, and enumerate a into A.

The basic R-strategy. An R-strategy ρ serves as the mother strategy for all of
its substrategies. It monitors the length of agreement between D and ΦA. At
non-expansionary stages, it takes the finitary outcome fin. At expansionary stages,
it makes progress towards building the functional Λ so that ΛD = E and takes its
infinite outcome ∞, allowing its S- and T -substrategies to act.
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The basic T -strategy. A T -strategy τ is a child strategy of some R-strategy. In
isolation, it checks the length of agreement between E and ΨL(D). At expansionary

stages, τ builds Γτ so that Γ
L(D)
τ = D. The strategy has two possible outcomes, Γ

and fin.

The basic S-strategy. An S-strategy σ, say, is a child strategy of some R-strategy.
In isolation, it checks the length of agreement between L(D) and ΩE , and if the
stage is expansionary, then σ first tries to build ∆σ so that ∆σ = L(D). This
strategy exhibits an interesting behavior in response to other strategies. We will
describe this in the next subsection and see how this response may cause σ to build

a backup functional Γσ so that Γ
L(D)
σ = D at expansionary stages. The strategy

has three possible outcomes, Γ, ∆, and fin.

2.3. Interactions between strategies. In this section, we consider nontrivial
interactions between strategies and describe how to overcome the corresponding
problems. Since all problems begin when a P-strategy enumerates an element
into A, we will always assume that there is a P-strategy below the other strategies
we consider.

A T -strategy τ below its mother R-strategy ρ. The nontrivial case is when a P-strat-
egy π below the Γ-outcome of τ acts. Let us consider τ in more detail. For every x,
we need to correctly define ΓL(D)(x) = D(x). We pick a big y = yx first and wait
until the length of agreement between ΨL(D) and E is larger than y. At the first
expansionary stage s at which this happens, we define ΓL(D)(x)[s] = D(x)[s] with
use γ(x)[s] = s > ψ(y)[s]. From now on (assuming τ is along the true path), the
equality between ΓL(D)(x) and D(x)[s] can be broken only if a witness a of the
P-strategy π ⊇ τ̂Γ is enumerated into A. It is worth noting that a must have been
chosen before stage s, and so this can happen at most finitely many times (since
all new witnesses of P-strategies after initialization will be chosen big enough and
there are only finitely many old witnesses).

The change in A allows a change in D on any x with Φ-use ϕ(x)[s] ≥ a. We have
the following possible cases:

(1) x enters D but there is no change in L(D) � (γ(x) + 1): Then we enumerate
y = yx into E and we initialize all strategies below τ . So we have 1 = E(y) 6=
ΨL(D)(y) = ΨL(D)(y)[s] = 0, and τ wins. Initialized strategies must pick
fresh witnesses, so from this moment on only strategies of higher priority
than τ can enumerate numbers into A that allow changes of ΨL(D)(y)[s].
Indeed, if ΨL(D)(y)[s] changes at a stage s1 > s, then a number x1 is
extracted from D where sD(x1) ≤ ψ(y) < s. It follows that some a1 ≤
ϕ(x1)[s] < s entered A after stage s, so a1 must have been chosen before
stage s.

(2) x enters or leaves D and there is a change in L(D) � (γ(x) + 1): In this
case, we can update D(x) = ΓL(D)(x) with new big use γ(x). Note that a
new update of ΓL(D)(x) can only be caused by a number a1 < a entering A.
This is because when a is enumerated into A by a P-strategy, we initialize
all lower-priority strategies, and hence all strategies with witnesses greater
than a. New witnesses will be greater than the current use ϕ(x) and will
not be able to change computations related to x. So an increase in ϕ(x) can
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only be caused by the enumeration of some a1 < a, and as we noted above,
this can happen at most finitely often.

Note that if x leaves D, then there must be a change in L(D) � (γ(x) + 1). This
is because we defined ΓL(D)(x) correctly at stage s, when we have that x is already
in D, and so sD(x) < s = γ(x). It follows that the two cases above exhaust all
possibilities.

In what follows, when we build a functional Γ, we can think of it as opening a
gap and allowing for some number a to enter A. Hence, either a gap will be closed
successfully, namely, at some point we have case (1) and a diagonalization at τ , or
all gaps will be closed unsuccessfully, namely, we always have case (2), in which
case we will correctly reduce D to L(D). In the construction, we will create a link
from τ to ρ. This link allows us to jump directly from ρ to τ and decide whether we
want to enumerate y into E while keeping E = ΛDρ correct. So we will enumerate
a number into or extract a number from E only when we come to a substrategy
of ρ using a link (if there is no link at ρ then we change E at ρ); otherwise, we will
not need to change E at ρ, since at ρ we will not be in a position in which we must
change E back due to D returning to an old initial segment (except for the situation
when some P-strategy between ρ and τ enumerates a small number into A, which
allows a D-change which can force us to change E back at ρ but also causes τ to be
initialized).

A T -strategy τ below an S-strategy σ below their mother R-strategy ρ. The real
conflict, which also causes this priority argument to be a 0′′′-argument rather than
just an infinite-injury argument, first arises in the following scenario: Suppose
we have an R-strategy ρ with an S-substrategy σ and a T -substrategy τ below
such that τ is below the finite outcome of σ. Furthermore, assume we have three
P-strategies π2, π1 and π0 below the Γ-outcome of τ , the ∆-outcome of σ and the
Γ-outcome of σ, respectively. Suppose now the following sequence of events:

First, the P-strategy π2 enumerates a witness a2 into A, allowing a number x to
enter D and causing τ to enumerate a number y = yx into E in order to diagonalize τ .
Next, the P-strategy π1 enumerates a witness a1 < a2 into A, allowing x to leave D,
which would normally force y to be extracted from E in order to keep Λ correct.
However, for the stage sD(x) at which x entered D, sD(x) will enter L(D) when x
leaves D, while σ has possibly already defined ∆(sD(x)) = 0, which cannot be
corrected. We resolve this conflict by threatening to let σ build a Turing functional
ΓL(D) = D to permanently satisfy ρ.

However, letting σ build Γ (and taking an infinite Γ-outcome to the left of the
infinite ∆-outcome) creates a new problem: Suppose our P-strategy π0 below the
Γ-outcome of σ next enumerates a number a0 into A, allowing D to change at a
number on which ΓL(D) is already defined and now possibly wrong. The strategy
for σ can use the following procedure to force an L(D)-change and correct ΓL(D):
Before letting π0 choose its witness a0, we have a number x from some P-strategy π1

ready that just left D and caused the function ∆ of σ to be incorrect. We will have
a link from ρ to σ so that we can visit σ directly before ρ has a chance to extract y
from E, allowing ΛD to be temporarily incorrect. If the functional ∆ is now wrong
on sD(x), then we create a second link from ρ to σ and move to outcome Γ, only
then allowing a0 to be enumerated in A. Suppose that this causes a change in D(x′).
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(1) If x′ enters D, then there need not be any L(D)-change and thus ΓL(D)(x′)
may now be incorrect. If ΓL(D)(x′) is defined, then this means that x′ is
small enough to allow us to preserve y in E while still keeping ΛD correct.
This causes a permanent disagreement between ΩE and L(D) at sD(x), since
the old definition of ΩE(sD(x)) = 0 is still valid while sD(x) ∈ L(D); this
disagreement can only be undone by an action of a strategy of higher priority
than σ, since σ can now switch to a permanent finitary diagonalization
outcome unless initialized later.

(2) If x′ leaves D (and had previously entered D at a stage sD(x′)), then it will
follow from the way we construct Γ that γ(x′) ≥ sD(x′). So x′ leaving D
will cause sD(x′) to enter L(D) and allow ΓL(D)(x′) to be corrected.

Similarly to the previous case, we open a second gap when we allow the number a0

to enter A. Either one of these gaps will be closed successfully (i.e., at some point,
we have case (1)) and we have a permanent win at σ, or all gaps will be closed
unsuccessfully (i.e., we always have case (2)), then we correctly reduce D to L(D).
Again, in the construction, we will create a link from σ to ρ since we jump from ρ
to σ when we need to decide whether to enumerate y into E or not, and the link
allows us to keep E = ΛDρ correct.

2.4. Several R-strategies. Now we consider several R-strategies with their sub-
strategies. In our intuitive analysis, we restrict ourselves to two R-strategies ρ0

and ρ1. Assume that we have ρ0 ⊂ ρ1, and that they have substrategies σ0 and σ1,
respectively (also assume that σ0 and σ1 have Γ-outcome). The conceivable relative
priorities for these strategies are as follows:

(1) ρ0 ⊂ σ0 ⊂ ρ1 ⊂ σ1,
(2) ρ0 ⊂ ρ1 ⊂ σ1 ⊂ σ0, and
(3) ρ0 ⊂ ρ1 ⊂ σ0 ⊂ σ1.

The third case could produce non-nested links; so we disallow it as follows:
When σ0 changes the global outcome of ρ0 along the true path, we introduce another
version of ρ1, say, an R-strategy ρ′1, first, and only allow substrategies of ρ′1 but not
of ρ1 below ρ′1. This reduces the third case above to the first, in the usual manner
of 0′′′-arguments.

In the first case, there is no real conflict, since ρ1 already knows that σ0 will
build its Γ, which permanently satisfies ρ0. In the second case, there may be links
from ρ0 directly to σ0, over ρ1 and σ1; but if σ0 truly has Γ-outcome, then we again
introduce another version of ρ1, say, an R-strategy ρ′1, below σ0 and only allow
substrategies of ρ′1 but not of ρ1 below σ0.

3. Construction

3.1. Outcomes and the tree of strategies. Throughout the construction, we
insert comments in brackets which we hope will help the reader connect the formal
construction back to the intuition given above.

Let ListFunc = {〈Φ,Ψ,Θ,Ω, D〉} be the above-mentioned computable listing of
all tuples of p.c. functionals Φ,Ψ,Θ,Ω and d.c.e. sets D.

Let ListReq be a computable listing of all requirements defined as follows: First,
we fix the least element 〈Φ0,Ψ0,Θ0,Ω0, D0〉 in ListFunc. Then we set
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ListReq = {PΘ | 〈Φ0,Ψ0,Θ,Ω0, D0〉 ∈ ListFunc} ∪
{RΦ,D | 〈Φ,Ψ0,Θ0,Ω0, D〉 ∈ ListFunc} ∪
{TΦ,D,Ψ | 〈Φ,Ψ,Θ0,Ω0, D〉 ∈ ListFunc} ∪
{SΦ,D,Ω | 〈Φ,Ψ0,Θ0,Ω, D〉 ∈ ListFunc}

For X ∈ ListReq, let ind(X ) ∈ ListFunc be the corresponding tuple for X . Now
we say that X < Y for X ,Y ∈ ListReq if and only if either ind(X ) 6= ind(Y) and
ind(X ) is listed before ind(Y) in ListFunc, or if ind(X ) = ind(Y) and X 6= Y, then
we use the following ordering of the requirements when we compare X and Y:
P < R < T < S.

The strategies for these requirements have the following outcomes, where L =
{d,∞,Γ,∆,fin} is the set of outcomes (we have added one more outcome d that
was not mentioned in the intuition, meant to isolate the situation when a strategy
has a permanent win by diagonalization, i.e., by successfully closing a gap):

• A P-strategy has two possible outcomes: d <L fin.
• An R-strategy has two possible outcomes: ∞ <L fin.
• A T -strategy has three possible outcomes: d <L Γ <L fin.
• An S-strategy has four possible outcomes: d <L Γ <L ∆ <L fin.

The tree of strategies T ⊂ L<ω is defined by induction as follows. When we
assign a requirement to some node, then the strategy of this requirement will work
at this node. For the empty node λ, we set ListReqλ = ListReq. Given a node
ξ ∈ T , we assign to it the highest-priority (sub)requirement from ListReqξ. If it is a
subrequirement of an R-requirement, then there will be a longest strategy ρ ⊂ ξ
assigned to the corresponding R-requirement, and we call ξ a child node of ρ and ρ
the mother node of ξ. Depending on the requirement assigned to ξ, we next define
the list of requirements yet to be satisfied as follows.

• If it is a PΘ-requirement, then define

ListReqξ̂d = ListReqξ̂fin = ListReqξ − {PΘ}.

• If it is an RΦ,D-requirement, then define

ListReqξ̂∞ = ListReqξ − {RΦ,D}, and

ListReqξ̂fin = ListReqξ − {RΦ,D}
− {TΦ,D,Ψ | ind(TΦ,D,Ψ) ∈ ListFunc}
− {SΦ,D,Ω | ind(SΦ,D,Ω) ∈ ListFunc}.

[So, for the infinite outcome, we remove only RΦ,D, but for the finite
outcome, we remove RΦ,D and all its subrequirements.]
• If it is a TΦ,D,Ψ-subrequirement and the mother node of ξ is ρ, then define

ListReqξ̂Γ = ListReqρ̂fin, and

ListReqξ̂d = ListReqξ̂fin = ListReqξ − {TΦ,D,Ψ}.

• If it is an SΦ,D,Ω-subrequirement and the mother node of ξ is ρ, then define

ListReqξ̂Γ = ListReqξ̂∆ = ListReqρ̂fin, and

ListReqξ̂d = ListReqξ̂fin = ListReqξ − {SΦ,D,Ω}.
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[Namely, in both these cases, under outcomes d and fin, we remove only the
subrequirement itself, whereas under outcomes Γ and ∆, we consider the
same list of requirements as under the finite outcome of the mother node.]

Now we define the expansionary stages. A stage s is called a ξ-stage if the node ξ
is visited at this stage. The length of agreement functions for an R-strategy ρ and
for an S-strategy σ are defined as follows:

l(ρ)[s] = max
{
t < s | ∀x < t (D(x)[s] = ΦAρ (x) ↓ [s])

}
,

l(σ)[s] = max
{
t < s | ∀z < t (L(D)(z)[s] = ΩEσ (z) ↓ [s])

}
.

A stage s is ξ-expansionary (for ξ ∈ {ρ, σ}) if l(ξ)[s] > s−[s], where s−[s] =
s−ξ [s] is the previous ξ-expansionary stage at stage s, and where stage 0 is always

ξ-expansionary. (Note that we will not need the notion of a ξ-expansionary stage
for T -strategies ξ, where we will use a version of the Sacks coding strategy instead.)
During the construction, initializing a node will mean canceling its satisfaction, its
witnesses, and its associated functionals.

3.2. Full Construction. We build a computable approximation TPs to the true
path TP at each stage. Meanwhile we define approximations of all sets and func-
tionals at these stages (keeping sets and functionals the same unless we redefine
them explicitly). The construction proceeds as follows.

Stage s = 0. We set A0 = ∅ and initialize all strategies.

Stage s+ 1. We work in substages t ≤ s+ 1, possibly skipping over some substages.
Let TPs,0 = λ. Given TPs+1,t at a substage t+1, we define TPs+1,t′ for some t′ > t
(usually t′ = t+ 1). After we define TPs+1,t+1, if t < s, then we proceed to substage
t+ 2 unless explicitly stated otherwise. If t = s, then we define TPs+1 = TPs+1,t+1,
proceed to the next stage, and initialize all nodes ξ 6≤ TPs+1. At substage t + 1,
the construction depends on the requirement assigned to TPs+1,t:

Case 1: TPs+1,t = π is a P-strategy: Go to the first subcase which applies.

π1. If no witness is defined for π, then define a = aπ to be a big number and let
TPs+1,t+1 = π̂fin.

π2. Otherwise, if Θ(a)[s] ↑ or Θ(a)[s] 6= 0, then define TPs+1,t+1 = π̂fin.
π3. Otherwise, if Θ(a)[s] = 0 and a 6∈ As, then enumerate a into A and define

TPs+1,t+1 = π̂d.
π4. Otherwise, Θ(a)[s] = 0 and a ∈ As, so define TPs+1,t+1 = π̂d.

Case 2: TPs+1,t = ρ is an R-strategy: Go to the first subcase which applies. [The
goal of ρ is to use links and to define the reduction E ≤T D.]

ρ1. If stage s is not ρ-expansionary, then define TPs+1,t+1 = ρ̂fin.
ρ2. Otherwise, fix the previous ρ-expansionary stage s−[s+ 1] = s and consider

the following subcases.
ρ2.1. If there is no link to ρ, then extract the necessary numbers from E = Eρ

in order to keep E(y)[s + 1] = ΛDρ (y)[s] correct for all y ∈ dom(ΛDρ [s]),

define ΛDρ (y0)[s+ 1] = E(y0)[s+ 1] for the least y0 /∈ dom(ΛDρ [s]), with use
λρ(y0)[s+ 1] = y0. Let TPs+1,t+1 = ρ̂∞. [It is easy to see that each λρ(y0)
will not increase and is bigger than x0, the number to which it is potentially
related by some T -strategy.]
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ρ2.2. Otherwise, travel the link to the child node η, say, which created the link,
define TPs+1,|η| = η, and proceed to substage |η|+ 1.

Case 3: TPs+1,t = τ is a T -strategy: The strategy works in cycles. Let ρ be the
mother node of τ . Proceed as in the first subcase which applies. [The goal of τ is to
diagonalize against E = ΨL(D) or to define a reduction D ≤T L(D).]

τ1. If τ is visited through a link, then the link must be from the mother node ρ.
Cancel this link and consider the following subcases. [This means that at
the previous τ -stage we had outcome Γ, and now we either diagonalize or
extend the Γ-functional.]

τ1.1. If there is x such that ΓL(D)(x)[s] is defined and such that D(x)[s] 6=
ΓL(D)(x)[s], then put yx into E and define TPs+1,t+1 = τ ̂d. Declare τ
satisfied. [This is Case (1) in the intuition, which allows us to change
E(yx) since ΛD(yx) becomes undefined because of x, hence it allows a
diagonalization at τ .]

τ1.2. Otherwise, let x be the greatest opened cycle (if there is none, set x = 0).

Open cycle x+ 1 and, for all u ≤ x, define Γ
L(D)
τ (u)[s+ 1] = D(u)[s+ 1] (if

Γ
L(D)
τ (u)[s] ↑) with use γ(u) = s+ 1, and define TPs+1,t+1 = τ ̂fin. [This

is Case (2) in the intuition.]
τ2. Otherwise, if τ is satisfied, then define TPs+1,t+1 = τ ̂d
τ3. Otherwise, let x be the greatest opened cycle (if there is none, set x = 0).

Consider the following subcases.
τ3.1. If there is no attacker y = yx, then choose y big, and define TPs+1,t+1 =

τ ̂fin.
τ3.2. Otherwise, if E(y)[s] 6= Ψ

L(D)
τ (y)[s], then define TPs+1,t+1 = τ ̂fin.

τ3.3. Otherwise, we have E(y)[s] = Ψ
L(D)
τ (y)[s] ↓, so we create a link with ρ and

define TPs+1,t+1 = τ ̂Γ.

Case 4: TPs+1,t = σ is an S-strategy: The strategy works in cycles. Let ρ be the
mother node of σ. Go to the first subcase which applies. [The goal of σ is to
diagonalize against L(D) = ΩE or to either define a reduction L(D) ≤T ∅ or to
define a reduction D ≤T L(D). Also note that cycles here are analogues of cycles
in T -strategies; however, inside these cycles, we use σ-expansionary stages, which
could be considered as inner cycles.]

σ1. If σ is visited through a link, then the link must be from the mother node ρ,
and before creating the link at the previous σ-expansionary stage s− = s−σ [s],
the node σ had either outcome ∆ or Γ. Cancel this link and consider the
following subcases.

σ1.1. If the previous outcome was ∆, then if there is some z ≤ s−[s−[s]] with
∆σ(z)[s] 6= L(D)(z)[s], then keep ΛDρ (y) undefined (where y = yx is the
number which entered E earlier due to x entering D but now x has left D
again, and z = sD(x)), create a link between σ and ρ again, and define
TPs+1,t+1 = σ̂Γ. [The first gap is closed successfully.]

σ1.2. Otherwise, if the previous outcome was ∆, but the functional ∆σ agrees
with L(D) on its domain, then, for all z ≤ s−[s], define ∆σ(z)[s + 1] =
L(D)(z)[s + 1], and define TPs+1,t+1 = σ ̂fin. [The first gap is closed
unsuccessfully.]

σ1.3. Otherwise, the previous outcome was Γ. If there is an opened cycle x

such that Γ
L(D)
σ (x)[s] is defined and D(x)[s] 6= Γ

L(D)
σ (x)[s], then declare σ
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satisfied, keep E unchanged, and redefine ΛDρ (y) = E(y) with old use λ(y) for
all y (which is possible due to the fresh x ∈ D), and define TPs+1,t+1 = σ̂d.
[The second gap is closed successfully. This is Case (1) in the intuition which
allows to keep E(y) unchanged since ΛD(y) became undefined because of x,
hence it allows diagonalization at σ.]

σ1.4. Otherwise, the previous outcome was Γ, and ΓL(D) is correct on its domain.
Let x be the greatest opened cycle (if there is none, set x = 0). Then

open cycle x+ 1, and for all u ≤ x, define Γ
L(D)
σ (u)[s+ 1] = D(u)[s+ 1] (if

Γ
L(D)
σ (u)[s] ↑) with use γ(u) = s+1, cancel ∆, and define TPs+1,t+1 = σ̂fin.

[The second gap is closed unsuccessfully. This is Case (2) in the intuition.]
σ2. Otherwise, if there is an opened cycle x such that σ is satisfied at cycle x,

then define TPs+1,t+1 = σ̂d.
σ3. Otherwise, if stage s is not σ-expansionary, or if this is the first visit of σ

after initialization, then TPs+1,t+1 = σ̂fin.
σ4. Otherwise, s is a σ-expansionary stage, then fix the previous expansionary

stage s−σ [s + 1] = s, create a link with ρ, and define TPs+1,t+1 = σ̂∆.
[Note that this feature introduces a small delay into the definition of ∆.]

4. Verification

Define the true path TP = lim infs TPs. We will show that TP exists and that
each requirement is satisfied by some node along TP .

Lemma 4.1. The true path TP exists.

Proof. This is clear by definition since the tree is finitely branching and |TPs| = s
for all s ∈ ω. �

Lemma 4.2. Each node along the true path TP is initialized only finitely often.

Proof. At stage s, we initialize only the nodes ξ 6≤ TPs. So eventually, every node
along TP will not be initialized. �

Lemma 4.3. There are no nodes along TP which are part of a permanent link.

Proof. A link connects a mother node and one of its children. So, if a mother node is
along TP and is part of a link, then when we visit the mother node, we travel the link
to its child node and cancel the link if the child node is a T -substrategy, or cancel
the link after traveling it at most twice if the child node is an S-substrategy. �

Lemma 4.4. For every R-strategy ρ along the true path and with true outcome ∞,
there are infinitely many stages at which it does not travel links and ρ̂∞ is visited.
More generally, each node on TP is visited infinitely often.

Proof. Suppose ρ travels a link to a child strategy ξ. It follows that ξ has not yet
been satisfied, and so all strategies below ξ̂d are in initial state. By construction,
when we previously visited ξ it took an infinite outcome Γ or ∆, and so all strategies
extending ξ̂fin are also in initial state. If ξ is a T -strategy τ , the link is canceled
and τ has either outcome d for the first time since initialization or outcome fin,
visiting in each case strategies in their initial state. If ξ is an S-strategy σ, the link
is canceled and σ has either outcome fin, visiting strategies in their initial state, or
creates a second link and has outcome Γ. At the next expansionary ρ-stage, the
second link is traveled and canceled, and σ has outcome d or fin, visiting in each
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case strategies in their initial state. No strategy in its initial state can create a link
on its first visit. So, when ρ is next visited, it will not travel a link, and at its next
expansionary stage, ρ will have outcome ∞.

The second part of this lemma is now an easy induction. Consider a node η ∈ TP
and assume that lemma holds for all ξ ⊂ η. The case of the empty node η is trivial,
so let η = ξ̂o. The case when ξ is an R-strategy and o =∞ was just proved. If
o = fin or o = d, then η is visited at all but finitely many ξ-stages. If o = Γ or
o = ∆, then unless ξ has outcome o at infinitely many stages, η is not along the
true path, contradicting our choice of η. �

Lemma 4.5. Each P-requirement is satisfied by a node along the true path TP.

Proof. Consider a requirement PΘ. By the definition of the tree of strategies, we
can choose a node π ⊂ TP assigned to PΘ of maximal length. By Lemma 4.4, π is
visited at infinitely many stages. By Lemma 4.2, we fix a stage s0 such that π is not
initialized after stage s0 (even though links starting at ρ ⊂ π to some child node
τ ⊃ π of ρ may be traveled after stage s0, this would not initialize π). It follows
that π has a final witness a. Now, clearly, the requirement will be satisfied: Either
Θ(a) 6= 0 and a /∈ A; or at some stage s1 > s0, Θ(a)[s1] = 0 and when we next
visit π, we enumerate a into A. �

Lemma 4.6. If a TΦ,D,Ψ-strategy of maximal length along TP has outcome d or fin,
then its requirement is satisfied.

Proof. By the definition of the tree of strategies, we can choose a node τ ⊂ TP
assigned to TΦ,D,Ψ of maximal length. By Lemma 4.2, we fix a stage s0 such that τ
is not initialized after stage s0. Now consider the following two cases:
τ ̂fin ⊂ TP : Then fix a stage s1 > s0 such that τ does not take an outcome

to the left of fin after stage s1. Now let x be the greatest opened cycle, so for all
τ -stages t > s1 we have 0 = E(yx) = E(yx)[t] 6= ΨL(D)(yx)[t] (otherwise, we would
have outcome Γ at least once). Hence, TΦ,D,Ψ is satisfied.
τ ̂d ⊂ TP : Then fix a stage s1 > s0 such that τ takes outcome d at stage s1

and diagonalizes via cycle x. Then we have that 1 = E(yx) = E(yx)[s1 + 1] 6=
ΨL(D)(yx)[s1] = 0. Furthermore, for all τ -stages t > s1, the only way this can
change is if L(D) � (ψ(yx)[s1] + 1) changes. However, this can happen only if a
number x0 leaves D after stage s1 and sD(x0) ≤ ψ(yx)[s1] < s1, but this means
that A � (ϕ(x0)[s1] + 1) has changed after stage s1, and this can happen only due to
a node ξ < τ (and so τ would be initialized in that case). Indeed, after stage s1, τ
will always take outcome d, below which every P-strategy will choose a fresh witness
greater than s1 > ϕ(x0)[s1]. (Moreover, since we visited τ at stage s1, there was no
link which crossed over τ ̂fin at stage s1. Also, if new links cross over τ ̂d later,
they don’t affect our restraint on A.) So TΦ,D,Ψ is satisfied. �

Lemma 4.7. If an SΦ,D,Ω-strategy of maximal length along TP has outcome d
or fin, then its requirement is satisfied.

Proof. By the definition of the tree of strategies, we can choose a node σ ⊂ TP
assigned to SΦ,D,Ω of maximal length. By Lemma 4.2, we fix a stage s0 such that σ
is not initialized after stage s0. Now consider the following two cases:
σ̂fin ⊂ TP : Then fix a stage s1 > s0 such that σ does not take an outcome to

the left of fin after stage s1. Then we never see another σ-expansionary stage, and
so SΦ,D,Ω is satisfied vacuously.
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σ̂d ⊂ TP : Then fix a stage s1 > s0 such that σ first takes outcome d at a
σ-stage ≥ s1. Assume this was due to cycle x, so by case σ1.3 of the construction, we
have that D(x)[s1] 6= ΓL(D)(x)[s1]. We first argue that x ∈ D[s1], since otherwise,
ΓL(D)(x)[s1] = 1 with use γ(x) ≥ sD(x), but after ΓL(D)(x) was defined, x has
left D and so sD(x) has entered L(D), destroying the computation ΓL(D)(x). This
allows us to redefine Λ as described in σ1.3.

Now consider the number z which caused σ to proceed to case σ1.1; it must be
of the form z = sD(x′) for some x′ which had left D already at a stage s′ < s1,
say, causing z to enter L(D) while ∆(z) = 0. But just before stage s′, we had
L(D)(z) = 0 = ΩE(z) since the σ-stage before stage s′ was σ-expansionary; and
since E was not allowed to change until stage s1, we will have ΩE(z)[s1] = 0 while
z ∈ L(D). By initialization, we then have that ΩE(z) = 0 is preserved, so SΦ,D,Ω is
satisfied. �

Lemma 4.8. If a TΦ,D,Ψ-strategy of maximal length along TP has outcome Γ, then
it correctly builds a Γ-functional.

Proof. By the definition of the tree of strategies, we can choose a node τ ⊂ TP
assigned to TΦ,D,Ψ of maximal length. By Lemma 4.2, we fix a stage s0 such that τ

is not initialized after stage s0. Now we prove that ΓL(D) = D. It is clear by the
construction (case τ1.2) that for any x, there are infinitely many stages s ≥ s0 at
which we have ΓL(D)(x)[s] ↓= D(x)[s]. It remains to show that γ(x) is bounded.
So fix x and assume that γ(x)[s] = s is defined at stage s (via case τ1.2). Since we
traveled the link, the numbers below outcome fin will be chosen big, in particular,
any witness a chosen below it is bigger than the use ϕ(x) (namely, from now on, it
is bigger than s−[s+ 1] > ϕ(x)[s], where s−[s+ 1] = s is that ρ-expansionary stage).
Hence, only numbers of P-strategies below the Γ-outcome can change D � (x+ 1)
(and so change L(D) � (γ(x) + 1)). Note, however, that the enumeration of each
such number a initializes all lower-priority strategies, so we will have fewer and
fewer such numbers a, and so γ(x) will be increased only finitely often. Hence,
ΓL(D) = D. �

Lemma 4.9. If an SΦ,D,Ω-strategy of maximal length along TP has outcome Γ
or ∆, then it correctly builds a Γ- or ∆-functional.

Proof. By the definition of the tree of strategies, we can choose a node τ ⊂ TP
assigned to SΦ,D,Ω of maximal length. By Lemma 4.2, we fix a stage s0 such that σ
is not initialized after stage s0. If σ̂Γ ⊂ TP , then the proof is similar to the proof
in Lemma 4.8. So let σ̂∆ ⊂ TP . Then, after some stage s1 > s0, we never go
to the left of outcome ∆. By the construction, this means that we can only have
cases σ1.2, σ3, and σ4; and cases σ4 and then σ1.2 must occur infinitely often.
Hence, ∆ = L(D), and the lemma is proved. �

Lemma 4.10. Each R-requirement is satisfied by a node along the true path TP.

Proof. Consider a requirement RΦ,D. By the definition of the tree of strategies, we
can choose a node ρ ⊂ TP assigned to RΦ,D of maximal length. Clearly, ρ cannot
be strictly between two fixed nodes forming a link created and canceled infinitely
often (otherwise, ρ would not have maximal length). By Lemma 4.2, fix a stage s0

such that ρ is not initialized after stage s0. If ρ has finitely many ρ-expansionary
stages, then R is satisfied vacuously; otherwise, assume that ρ has final versions of
its set E = Eρ and functional Λ = Λρ.
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We prove that ΛD is total and correctly computes E. Fix a natural number y and
suppose inductively that ΛD(z) ↓= E(z) for all z < y at all stages s starting at some
stage s1 ≥ s0. By Lemma 4.4, there are infinitely many stages at which case ρ2.1 is
executed. At such stages t > s1, the strategy ρ ensures that ΛD(y) = E(y) with
use y. As D is d.c.e, it follows that D � (y + 1) will eventually stop changing, after
stage s2, say, and hence ΛD(y) is defined. On the other hand, E(y) can change
at most twice: E(y) = 0 holds at all stages unless y = yx is a number used by a
specific T -strategy τ in relation to some number x < y. In this case, τ is the only
strategy that can enumerate y into E, and this happens under case τ1.1, when D(x)
also changes and τ is declared satisfied. The change in D at x allows ρ to correct
ΛD(y). The strategy τ then has outcome d until (if ever) it is initialized and so it
will never deal with the number y again. After that, E(y) can change only once,
if it is extracted from E by ρ under case ρ2.1. This happens if D � (y + 1) has
reverted to an old state, and so x was previously enumerated into D when y was
enumerated in E, but now D(x) = 0 again. Note that D(x) = 0 at all future stages,
and so ΛD(y) = E(y) will remain true at all future stages.

If all substrategies of ρ along the true path have finite outcomes, then it follows
from Lemma 4.6 and Lemma 4.7 that E is Turing incomparable to L(D). Otherwise,
it follows from Lemma 4.8 and Lemma 4.9 that either L(D) is computable or
L(D) ≡T D. In both cases, R is satisfied.

�
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