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Introduction

Probability is everywhere. Be it a lottery, goats hiding behind doors
or ravens that might not be black, we cannot escape the influence of
probability. This influence is also very clear in the theory of learning:
if one wants to say something about the entire population of some
class (for example, that all ravens are black), we can never expect to
check all members of the population; the best we can do is induce a
general statement from our finite observations, making sure to take the
unreliability of this induction into account.

Classical mathematical logic does not allow us to express these in-
ductive statements — indeed, the universal quantifier ∀ in classical
first-order logic expresses that something holds for an entire popula-
tion, without allowing us to specify the reliability (or probability) of
this statement. From this deficiency the field of probability logic has
sprouted, with many contributions over the years. We will discuss some
of these contributions below.

The theory of inductive learning (as described above) has also been
the subject of much research. The most notable contribution in this
field of machine learning is Valiant’s model of Probably Approximately
Correct learning (PAC-learning) [19], which has become one of the main
paradigms in computational learning theory. We will not discuss this
learning model in much detail, but we will be looking at its intersection
with probability logic.

The first probability logic that we want to mention comes from
unpublished work of Friedman, which is exhibited in Steinhorn [16].
Among the quantifiers he studied is a quantifier expressing that “there
exists non-measure 0 many”. Since there are not many relations to our
current work, we will not discuss this quantifier in more detail.

A probability logic that is closer to the logic which we will discuss in
this thesis is the probability logic proposed by Keisler [10]. His models
are formed by classical models enriched with a probability measure,
so that the classical quantifiers ∀ and ∃ can be replaced by probability
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quantifiers expressing that a statement holds with a certain probability.
While it is close to ours and we will reuse some of the ideas expressed for
Keisler’s logic by Keisler [11] and Hoover [7], it is also vastly different
— it is not learnable, unlike ours; also, it does not have the classical
existential quantifier ∃, which our logic does have. Furthermore, our
logic has the advantage of using the syntax of classical first-order logic,
resulting in a cleaner presentation. Nonetheless, we will use several
ideas and constructions originally developed for Keisler’s probability
logic.

Valiant [20] was the first to introduce a probability logic with PAC-
learning properties. However, as can be seen in Section 3.2 of this
thesis, his approach is fundamentally different from ours. We therefore
do not consider our logic as an extension of his work, but as a different
path.

Terwijn [17] also introduced a logic combining probability logic and
some sense of PAC-learning. It is this logic that we will be studying
in this thesis, exhibiting various model-theoretic, recursion-theoretic
and learning-theoretic results. We will present both small and large
modifications of earlier results, as well as completely new results.

We will now give a brief outline of this thesis. The first chapter will
discuss the various prerequisites needed for this thesis — most notably,
it presents the necessary definitions and results from measure theory.
Since we need probability measures for the definition of our logic, it is
inevitable that we discuss these measures. This chapter only contains
some elementary and well-known facts; more specialistic results are
introduced when they are needed.

Chapter 2 introduces the probability logic which we will be studying
in this thesis. We equip classical models with a probability measure,
so that we can give a probabilistic interpretation of the universal quan-
tifier, while keeping the usual (classical) definition of the existential
quantifier. We also explain the choices we made for some (possibly
controversial) parts of our definition; most notably, we need to work
around the well-known problem that projections of measurable sets
need not be measurable (which was famously mistaken to be true by
Lebesgue). After discussing some elementary results on tautologies in
our logic, we return to the issue of learnability and introduce some no-
tion of learning of sentences closely related to PAC-learning. To show
that our logic is indeed learnable under this notion, we make slight
repairs to an earlier proof of this fact by Terwijn [17].
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After this introduction to our logic, in the third chapter we will go
back to the logics of Keisler and Valiant. We will present the definitions
for both of these logics and compare them to our logic. This chapter
serves as a historic overview of some earlier approaches and allows us
to put our work into context.

Chapter 4 concerns the computability theory of our logic. Our first
result shows that the set of tautologies is Π1

1-hard; i.e. that it is at least
as hard as first-order arithmetic enlarged with universal second-order
quantifiers. To prove this, we adapt a proof originally given by Hoover
[7] for Keisler’s probability logic. In particular, this shows that the
set of tautologies is also not computably enumerable; therefore there
exists no effective calculus. We expand our argument to show that
the universal fragment of arithmetic can be interpreted in the set of
satisfiable sentences (where we remark that, unlike in classical logic,
the notions of validity and satisfiability are not complementary to each
other), which shows that satisfiability in our logic is at least as hard as
classical satisfiability.

Finally, in Chapter 5 we obtain some model-theoretic results for
our probability logic. The first result, a version of the downwards
Löwenheim-Skolem theorem, is obtained through a generalisation of
an argument by Hoover [8]. To be more precise, we show that every
model is equivalent to a model of cardinality 2ω (unlike in classical
logic, there are sentences which are only probabilistically satisfiable
in uncountable models). While a priori this tells us nothing about
the probability measure on this model, we next present a new result
showing that every satisfiable sentence in satisfiable in some model
on [0, 1] equipped with the Lebesgue measure. Our final result shows
that, while the compactness theorem does not hold for our logic, we
still have some weaker notion of compactness. To show this, we use a
construction to define a measure on ultraproducts of measure spaces,
as originally given in Bageri and Pourmahdian [2].

We finish this thesis by briefly discussing in which directions further
research on this logic could be taken. Our specific logic has not been
the subject of much research yet and therefore the possible directions
are aplenty — for example, one might look into the decidability of
fragments of our logic, or one could look at model-theoretic questions
such as elimination of quantifiers. Therefore, the open questions are
very much like black ravens — we can never expect to research all of
them.
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1
Prerequisites

1.1 Measure Theory

This thesis relies heavily on measure theory — to be more precise,
on probability measures. In this section we will briefly state some
basic definitions and results, to be used throughout this thesis. The
treatment will be short and mostly without proofs; for more details the
reader is referred to a book on measure theory (such as Bogachev [4]).

We begin with the basic definitions.

Definition 1.1.1. Let X be a set. Then a σ-algebra over X is a
collection A of subsets of X such that:

1. ∅, X ∈ A;

2. If A ∈ A , then X \A ∈ A ;

3. If A0, A1, . . . is a countable sequence of elements from A , then

⋃

i∈ω
Ai ∈ A .

For a given collection Γ of subsets of X, we call the least σ-algebra
A containing Γ the σ-algebra generated by Γ; this will be denoted
by σ(Γ).

Definition 1.1.2. Let A be a σ-algebra over X. Then a measure on
A is a function µ : A → [0,∞) such that for every countable sequence
A0, A1, . . . of disjoint sets from A we have

µ(
⋃

i∈ω
Ai) =

∞∑

i=0

µ(Ai).
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6 1 Prerequisites

We will call the sets in A the µ-measurable sets. If the intended
σ-algebra is clear from the context, we will call µ a measure over X
instead of a measure over A .

The tuple (X,A , µ) is called a measure space

Definition 1.1.3. If µ is a measure over X such that µ(X) = 1, then
we call µ a probability measure or probability distribution, and
we will usually denote it by D.

Definition 1.1.4. Let µ be a measure over X. If f : X → R, we say
that f is a measurable function if {x | f(x) < c} is µ-measurable for
every c ∈ R.

More generally, if ν is a measure over Y , then a function f : X → Y
is called a measurable function if for every ν-measurable set B the
set f−1(B) is µ-measurable.

Now we discuss some specific constructions we will need in this
thesis.

Definition 1.1.5. Let A be a σ-algebra over X and let A ′ be a σ-
algebra over Y . Then we define the sum of A and A ′, denoted as
A ⊕ A ′, as the σ-algebra {A ∪B | A ∈ A , B ∈ A ′} over X ∪ Y .

Furthermore, if we let µ be a measure over A and let ν be a measure
over A ′, then we define the sum of µ and ν, denoted as µ⊕ ν, as the
measure over A ⊕ A ′ and given by

(µ⊕ ν)(C) := µ(C ∩X) + ν(C ∩ Y ).

For our definition of probability logic, we will be needing the product
measure. To introduce this measure, we need some form of extension
theorem.

Definition 1.1.6. Let X be a set. A Boolean algebra B is defined
as in Definition 1.1.1, but with item 3 weakened to finite unions.

A pre-measure over a Boolean algebra B is a µ0 : B → [0,∞)
defined as in Definition 1.1.2, but with the equality only for sequences
such that

⋃
i∈ω Ai ∈ B .

Theorem 1.1.7 (Carathéodory’s extension theorem). Every pre-
measure µ0 on a Boolean algebra B can be uniquely extended to the
σ-algebra generated by B.

Using this extension theorem, we can introduce the product meas-
ure.

1.1 Measure Theory 7

Definition 1.1.8. Let A be a σ-algebra over X and let A ′ be a σ-
algebra over Y . Then we define the product of A and A ′, denoted
as A ⊗ A ′, as the σ-algebra generated by {A×B | A ∈ A , B ∈ A ′}.

Furthermore, if we let µ be a measure over A and let ν be a measure
over A ′, then we define the product of µ and ν, denoted as µ⊗ ν, as
the measure over A ⊗ A ′ that is the unique extension of

(µ⊗ ν)(A×B) := µ(A)ν(B).

We will denote µn for the product of n copies of µ. Observe that,
if D and E are both probability measures, then so is D ⊗ E .

One of the most well-known theorems from measure theory is Fu-
bini’s theorem. Since we do not need any integrals in this thesis, we
will only state the part of the theorem about measures.

Theorem 1.1.9 (Fubini’s theorem). Let µ, ν be probability meas-
ures over sets X respectively Y . Let A ⊆ X × Y be µ⊗ ν-measurable.
Then:

1. For each x ∈ X, the section

Ax := {y ∈ Y | (x, y) ∈ A}

is ν-measurable.1

2. The function x 7→ ν(Ax) is measurable.

We now return to the topic of generation of σ-algebras. The defin-
ition given above (Definition 1.1.1) is fairly non-constructive in the
sense that it is a top-down definition. The next proposition states
some facts we will need (in Chapter 5); these will be proven through a
more bottom-up approach.

Proposition 1.1.10. Let Γ be a collection of subsets of X of cardinality
κ. Then:

1. σ(Γ) has cardinality at most κω.

2. Every A ∈ σ(Y ) can be formed using a combination of countable
unions, intersections and complements of at most countably many
elements from Γ.

1Usually, Fubini’s theorem is stated for the completion of the product measure.
Then this statement only holds for almost all x ∈ X instead of for all x ∈ X.
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Proof. We give an inductive construction of σ(Γ) over ℵ1, from which
these facts will be directly clear.

First, we let A0 be Γ. For the successor step, we let Aα+1 consist
of:

• For A ∈ Aα: X \A ∈ Aα+1.

• For every countable sequence A0, A1, . . . ∈ Aα :
⋃
i∈ω Ai ∈ Aα+1.

Finally, we take unions at limit ordinals.
One can now easily verify that σ(Γ) is a σ-algebra containing Γ.

Both claims can now be directly verified using induction.

Finally, we define Borel measures and complete measures.

Definition 1.1.11. Let X be a topological space. The Borel σ-
algebra is the σ-algebra generated by the open sets of X. If a measure
is defined on the Borel σ-algebra, we call it a Borel measure. We call
the elements of the Borel σ-algebra Borel sets.

Definition 1.1.12. A measure µ is called complete if every subset of
a set having measure 0 is also measurable (and has measure 0). The
completion of µ is the least complete measure extending µ (in the
sense of the smallest σ-algebra).

2
Probability Logic and PAC-Learning

2.1 The Definition of Probability Logic

As is to be expected, we start the main part of this thesis with the
necessary definitions. In this thesis, we will be studying the probability
logic as originally defined by Terwijn [17].

Our logic is motivated by an idea of what it means to ‘learn’ a
first-order statement. Our language will be that of regular first-order
logic. We ask ourselves: what does it mean to learn if such a statement
holds in a particular model? In particular, what does it mean to learn
a quantifier?

For existential statements we clearly want this to mean that, through
observation, we find a witness of such a quantifier. However, for uni-
versal statements we can never expect to induce these with full cer-
tainty through observation; more precisely, if we take a finite number
of samples from the model we can only induce the universal quantifier
up to a certain inaccuracy — that is, we can induce that it probably
holds for many elements of the model. This motivates the addition of
a probability distribution to our model. We can then formulate learn-
ing a sentence over an unknown model M and an unknown probability
distribution D over this model as following:

Given a certain confidence level for the universal quantifiers, can we
induce if a statement holds from a finite number of samples taken

according to the distribution D?

Following this idea, we introduce the logic that we will be studying
in this thesis. Section 2.3 will show that this logic is indeed learnable;
namely, that it is PAC-learnable.

9



10 2 Probability Logic and PAC-Learning

Definition 2.1.1. Let L be a first-order language, possibly containing
equality, over an at most countable signature. Let ϕ = ϕ(x1, . . . , xn) be
a first-order formula in the language L , and let ε ∈ [0, 1]. Furthermore,
let M be a classical first-order model for M and let D be a probability
measure on M . Finally, let a1, . . . , an ∈M . Then we inductively define
ε-truth (M ,D) |=ε ϕ(ā) as follows.

1. For every atomic formula ϕ:

(M ,D) |=ε ϕ(ā) if M |= ϕ(ā).

2. We treat the logical connectives ∧ and ∨ classically, e.g.

(M ,D) |=ε (ϕ ∧ ψ)(ā) if (M ,D) |=ε ϕ(ā) and (M ,D) |=ε ψ(ā).

3. The existential quantifier is treated classically as well:

(M ,D) |=ε ∃xn+1(ϕ(ā, xn+1))(ā)

if there exists an an+1 ∈M such that (M ,D) |=ε ϕ(ā, an+1).

4. The case of negation is split into subcases as follows:

(a) For ϕ atomic, (M ,D) |=ε ¬ϕ if (M ,D) 6|=ε ϕ(ā).

(b) ¬ distributes in the classical way over ∧ and ∨, e.g.

(M ,D) |=ε ¬(ϕ ∧ ψ)(ā) if (M ,D) |=ε (¬ϕ ∨ ¬ψ)(ā).

(c) (M ,D) |=ε ¬¬ϕ(ā) if (M ,D) |=ε ϕ(ā).

(d) (M ,D) |=ε ¬(ϕ→ ψ)(ā) if (M ,D) |=ε (ϕ ∧ ¬ψ)(ā).

(e) (M ,D) |=ε ¬∃x(ϕ(ā, x)) if (M ,D) |=ε ∀x(¬ϕ(ā, x)).

(f) (M ,D) |=ε ¬∀x(ϕ(ā, x)) if (M ,D) |=ε ∃x(¬ϕ(ā, x)).

5. (M ,D) |=ε (ϕ→ ψ)(ā) if (M ,D) |=ε (¬ϕ ∨ ψ)(ā).

6. Finally, we define (M ,D) |=ε ∀xn+1(ϕ(xn+1))(ā) if

Pr
D

[an+1 ∈M | (M ,D) |=ε ϕ(ā, an+1)] ≥ 1− ε.

Definition 2.1.2. Let L be a first-order language, possibly containing
equality, over an at most countable signature. Let ε ∈ [0, 1]. Then an
ε-model (M ,D) for the language L consists of a classical first-order
model M for L and a probability distribution D over M such that:

2.1 The Definition of Probability Logic 11

1. For all formulas ϕ = ϕ(x1, . . . , xn) and all a1, . . . , an−1 ∈M , the
set

{an ∈M | (M ,D) |=ε ϕ(a1, . . . , an)}
is D-measurable (i.e. all definable sets of dimension 1 are meas-
urable).

2. All relations of arity n are Dn-measurable and all functions of
arity n are measurable as functions from (M n,Dn) to (M ,D)
(in particular, constants are D-measurable).

Definition 2.1.3. We will say that a sentence ϕ is an ε-tautology
or is ε-valid (notation: |=ε ϕ) if for all ε-models (M ,D) it holds that
(M ,D) |=ε ϕ. Furthermore, we will say that ϕ is a probabilistic
tautology if it is ε-valid for all ε ∈ [0, 1].

Similarly, we call ϕ ε-satisfiable if there exists an ε-model (M ,D)
such that (M ,D) |=ε ϕ. Finally, ϕ is called probabilistically satis-
fiable if there exists an ε ∈ [0, 1) such that ϕ is ε-satisfiable.

We make some remarks on the truth definition.

1. Observe that everything is treated classically, except for the in-
terpretation of ∀x(ϕ(x)) in case 6. Instead of saying that we have
(M ,D) |=ε ϕ(a) for all elements a ∈ M , we merely say that it
holds for ‘many’ of the elements. This makes precise the notion
described above.

2. The definition of negation might need some explanation. Clas-
sically, our definition of negation would be the same as defining
(M ,D) |=ε ¬ϕ if (M ,D) 6|=ε ϕ. However, in our case this is dif-
ferent. Since, if we were to choose this alternative definition, we
would get that (M ,D) |=ε ¬∀x(ϕ(x)) holds if and only if we have
that PrD [a ∈ M | (M ,D) |=ε ϕ(a)] > ε. This is stronger than a
mere existential statement. Aside from the fact that this changes
the intended meaning of ∃, it would also be impossible to learn
this universal quantifier using only a finite sample. Therefore, our
alternative negation transforming a ∀ into an ∃ and vice versa is
more suited for our purposes.

3. Note that both (M ,D) |=ε ∀x(ϕ(x)) and (M ,D) |=ε ∃x(¬ϕ(x))
might hold; for example, ϕ might hold on a set of measure one
and simultaneously there could be a counterexample of measure
0. Thus, the logic defined above is paraconsistent . However, even
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though both ϕ and ¬ϕ might be satisfiable, they cannot both be
tautologies; this can be seen by observing that only one of them
can be true in a model on one point.

4. We choose to interpret ϕ → ψ as ¬ϕ ∨ ψ. This can be seen
as expressing that (M ,D) 6|=ε ¬ϕ implies that (M ,D) |=ε ψ
holds. This is weaker than the classical definition of saying that
(M ,D) |=ε ϕ implies (M ,D) |=ε ψ; namely, because of the para-
consistency, the fact that (M ,D) |=ε ϕ holds does not necessarily
imply that (M ,D) 6|=ε ¬ϕ. We really do not want the classical
definition; for example, if one were to take for ψ a contradiction
(such as ∃x(R(x) ∧ ¬R(x))) this would introduce the classical
∀x(ϕ(x)) as ∃x(¬ϕ(x))→ ψ. For reasons explained above, we do
not want this.

5. The case for ε = 1 is pathological; for example, all universal
statements are always true. We will therefore often exclude this
case.

6. We remark that it is not enough to require just the relations to be
measurable instead of all definable sets; because, even if a set is
measurable, its image under a projection need not be measurable.
This was famously mistaken to be true by Lebesgue, but there are
examples showing that a set can be measurable while its images
under projections are not.

7. Our definition slightly differs from the original definition in Ter-
wijn [17]. We require more sets to be measurable in our ε-models
than in the original definition, where the measurability condition
was moved to the truth definition. However, we need this stronger
requirement on our models to be able to prove anything worth-
while — in fact, a stronger requirement is already necessary for
most proofs published in earlier papers.

An alternative (weaker) possibility would be not to require the
relations to be measurable. This is, however, less natural, as dis-
cussed in Kuyper and Terwijn [13]. Nonetheless, we remark that
we use this property in only one theorem (Theorem 5.2.10); all
other theorems hold without it. We even have that compactness
fails with this requirement on relations (Theorem 5.4.1), while
compactness does hold if we do not impose it (Theorem 5.4.11).
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Example 2.1.4. Let Q be a unary predicate. Then the sentence ϕ
defined by ∀x(Q(x))∨∀x(¬Q(x)) is a 1

2 -tautology; namely, in every 1
2 -

model, either the set on which Q holds or its complement has measure
at least 1

2 . However, it is not an ε-tautology for ε < 1
2 .

Furthermore, both ϕ and ¬ϕ are classically satisfiable and hence ε-
satisfiable for every ε; in particular we see that ϕ can be an ε-tautology
while simultaneously ¬ϕ is ε-satisfiable (cf. item 3 above).

In many of our proofs, we will want our formulas to be in prenex
normal form, so that we can state our arguments more concisely. That
we can bring every formula into prenex normal form is therefore ex-
pressed in the next proposition.

Proposition 2.1.5 (Terwijn [17]). Every formula ϕ is semantically
equivalent to a formula ϕ′ in prenex normal form; that is, ϕ′ satisfies
(M ,D) |=ε ϕ ⇔ (M ,D) |=ε ϕ′ for all ε ∈ [0, 1] and all ε-models
(M ,D).

Proof. First, use Definition 2.1.1 to replace every implication by a dis-
junction and a negation. Furthermore, we can use it to push all nega-
tions inward. Next, we pull al quantifiers outside. Since the interpret-
ation of ∃ is classical, we already know that we can pull it outside. For
the universal quantifier, we need to check that

(M ,D) |=ε ϕ ∨ ∀x(ψ(x))⇔ (M ,D) |=ε ∀x(ϕ ∨ ψ(x))

and

(M ,D) |=ε ϕ ∧ ∀x(ψ(x))⇔ (M ,D) |=ε ∀x(ϕ ∧ ψ(x)),

where we assume that x is not free in ϕ. For the first one, we have:

(M ,D) |=ε ϕ ∨ ∀x(ψ(x))⇔ (M ,D) |=ε ϕ or Pr
D

[a ∈M | ψ(a)] ≥ 1− ε

⇔ Pr
D

[a ∈M | ϕ ∨ ψ(a)] ≥ 1− ε

⇔ (M ,D) |=ε ∀x(ϕ ∨ ψ(x)).

The other statement can be checked analogously.

2.2 Probabilistic Truth and Tautologies

As an introduction to the subject, it is interesting to compare our notion
of truth to the classical case and the intuitionistic case, for which we
will use the next proposition.
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Proposition 2.2.1 (Terwijn [17]). Let ϕ = ϕ(x) and let (M ,D)
be an ε-model. Then the sets Y := {a ∈ M | (M ,D) |=ε ϕ(a)} and
N := {a ∈ M | (M ,D) |=ε ¬ϕ(a)} satisfy Y ∪ N = M , but not
necessarily Y ∩N = ∅.

Proof. We prove this by induction on the structure of ϕ. The only
non-classical and therefore non-trivial case is that of the quantifiers;
since negation exchanges the universal and existential quantifier we
may suppose our quantifier to be universal. Therefore, suppose that
ϕ(x) = ∀y(ψ(x, y)) and suppose that a 6∈ Y . Then

Pr
D

[b ∈M | (M ,D) |=ε ψ(a, b)] < 1− ε,

and therefore the induction hypothesis tells us that

Pr
D

[b ∈M | (M ,D) |=ε ¬ψ(a, b)] > ε.

In particular, there exists a b ∈ M such that (M ,D) |=ε (¬ψ(a, b)).
But this exactly says that (M ,D) |=ε ¬ϕ(a), so a ∈ N .

Using this proposition, we can make a nice comparison to classical
and intuitionistic logic, as announced above. In the classical case, the
sets Y and N are disjoint and satisfy Y ∪N = M . In intuitionistic logic,
Y and N are still disjoint but do not necessarily satisfy Y ∪N = M . In
our probabilistic interpretation, we do have Y ∪N , but instead the sets
Y and N need not be disjoint (because of the paraconsistency discussed
above).

We will now turn our attention towards the ε-tautologies. The
0-tautologies form an interesting first case to discuss. First observe
that 0-truth does not coincide with classical truth: it only says that a
proposition holds almost everywhere (i.e. on a set of measure 1), but
it allows counterexamples of measure 0. However, we do have that the
0-tautologies coincide with the classical tautologies, as expressed in the
next proposition.

Proposition 2.2.2 (Terwijn [17]). The 0-tautologies coincide with
the classical tautologies.

Proof. (Sketch, for more details see Terwijn [17].) That every classical
tautology is a 0-tautology is directly verified from the definitions. For
the converse, observe that if ϕ is not a classical tautology, then there
exists a countable countermodel M . We can define a measure D on

2.3 PAC-Learning Probabilistic Sentences 15

this model giving every point non-zero measure. One can then verify
that (M ,D) 6|=ε ϕ.

We can also express a relation between the ε-tautologies and the
ε′-tautologies for different ε and ε′. The original proof in Terwijn [17]
does not take the measurability condition we imposed on the definable
sets of our ε-models into account, but (as mentioned in the same paper)
we can easily modify the proof to respect this condition.

Theorem 2.2.3 (Terwijn [17]). For all 0 ≤ ε < ε′ ≤ 1, the ε-
tautologies are strictly included in the ε′-tautologies.

Proof. The inclusion follows directly from Definition 2.1.1, since case 6
gets weaker if ε becomes bigger. For the strictness, first observe that
we may assume ε′ < 1, since otherwise we are in a degenerate case.
Furthermore, since the rationals are dense in the reals we may assume
ε and ε′ to be rational.

Thus, let ε′ = 1−mn . We introduce new unary predicatesX1, . . . , Xn

and define the sentence n-split by

∀x((X1(x) ∨ . . . ∨Xn(x)) ∧
∧

1≤i<j≤n
¬(Xi(x) ∧Xj(x)))

Then, since the formula n-split is universal, if a probabilistic model
(M ,D) satisfies (M ,D) 6|=ε′ ¬n-split, we have that n-split holds clas-
sically. We now let ϕ be the sentence

¬n-split ∨
∨

i1,...,im

∀x


 ∨

1≤j≤m
Xij (x)


 .

Then, if (M ,D) 6|=ε′ ¬n-split, we see that M splits into n disjoint
parts. By taking the m largest of these, we see that (M ,D) |=ε′ ϕ and
ϕ is therefore an ε′-tautology.

However, if we take the model (M ,D) based on the set {1, . . . , n}
where we let each Xi hold exactly on i and we let D be the uniform
distribution, we see that (M ,D) 6|=ε ϕ. Thus, we see that ϕ is not an
ε-tautology.

2.3 PAC-Learning Probabilistic Sentences

We now return to our initial motivation for introducing this logic:
namely, that we can induce facts accurately from a finite sample. We
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follow the approach from Terwijn [17]. However, the proof given there
is partially incorrect; we will discuss the problem below and we will
give a corrected proof.

Before we can say something useful, we will need to introduce the
notion of a sampling oracle.

Definition 2.3.1. A sampling oracle EX(M ,D) for an ε-model
(M ,D) is an oracle which, when called upon, draws a random ele-
ment from M according to D. Furthermore, when supplied with a
sample of elements and an atomic formula, the oracle tells us if the
atomic formula holds for this particular sample (observe that atomic
formulas may contain constants and function symbols).

In our definition of learning below we will have two parameters: an
error parameter ε (corresponding to the ε in our logic) and a confidence
parameter δ. We will usually take these to be small numbers from (0, 1].

Definition 2.3.2. A (probabilistic) algorithm L PAC-learns a sen-
tence ϕ if L, given an error parameter ε > 0 and a confidence para-
meter δ > 0, for every unknown ε-model (M ,D), and with access
to a sampling oracle EX(M ,D), L outputs one of the possibilities
(M ,D) |=ε ϕ or (M ,D) |=ε ¬ϕ such that with probability at least
1− δ the output is correct; that is, if L draws a sample of size n, then

Pr
Dn

[s ∈M n | L gives a correct answer when supplied with s] ≥ 1− δ.

Remember that both possible outputs can be correct, as discussed below
Definition 2.1.1.

This definition is inspired by, but not the same as, Valiant’s [19]
much-studied definition of Probably Approximately Correct learning
(PAC-learning). PAC-learning concerns forming, with high probability,
a hypothesis that approximates a concept. More precisely, let C be a set
of subsets of some set X (called the concepts). We consider algorithms
that have access to a sampling oracle EX(c,D) that, for an arbitrary
concept c ∈ C and an arbitrary probability measure on X, gives us
samples from X according to D and tells us if x ∈ c.

We now say that C is PAC-learnable if there exists some algorithm
L(ε, δ) polynomial in 1

ε and 1
δ , using EX(c,D), such that for all ε, δ > 0,

every unknown probability distribution D on X and every unknown
concept c ∈ C the algorithm outputs with probability at least 1 − δ a
hypothesis h ∈ C such that PrD [h4c] < ε.
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Clearly, the δ in our definition can be linked to the Valiant’s δ and
stands for the Probably. With regard to the Approximately represented
by the ε, our definitions do not connect as clearly. However, in both
definitions the ε clearly represents some notion of approximation — be
it approximate truth or approximation in measure. Therefore, there is
a clear connection between our probability logic and PAC-learning.

To make this connection more precise, we turn towards the following
theorem from Terwijn [17].

Theorem (incorrect). There exists an algorithm L that PAC-learns
any sentence ϕ.1 If ϕ has n quantifiers, L takes a sample of size(

1
ε ln n

δ

)n
.

While the algorithm described in this paper (and the first statement
of the theorem) is correct, the proof of its correctness is incorrect. The
last part of the proof contains incorrect reasoning with contrapositives
in a probabilistic environment. The lower bound on the sample size is
incorrect, as we will show after explaining the algorithm. Fortunately,
we can fix these problems if we take a slightly larger sample, as we will
demonstrate next. We wish to emphasise that the lower bound remains
polynomial in 1

ε and 1
δ .

Theorem 2.3.3. There exists an algorithm L that PAC-learns any
sentence ϕ. If ϕ has n quantifiers, L takes a sample of size at most(

1
ε2

1
δ (2n)!

)n+1
. In particular, L is polynomial in 1

ε and 1
δ .

Proof. We use the same algorithm as in Terwijn [17], but slightly alter
the proof. The main idea behind this algorithm is to decide existential
quantifiers by taking a large enough sample and looking for a witness
in it, and likewise one can decide universal quantifiers by taking a large
enough sample and looking if it contains any counterexamples. For a
given, fixed number of quantifiers one can then iterate this idea and
compute how large a sample one needs to take to make the decision
accurately.

More precisely, consider any sentence ϕ. By Proposition 2.1.5, we
may assume ϕ to be in prenex normal form, say

ϕ = Qx1Q
′x2Qx3Q

′x4 . . . Q
′′Xnψ(x1, . . . , xn).

Let m ∈ ω; this will represent the number of values we sample per
quantifier. Consider the algorithm defined as follows:

1This first part of the statement is correct; it is the second part that is incorrect.
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1. First, take a sample for ϕ: that is, for each sampled value of
xi separately, sample m values for xi+1 from M according to D.
Thus, in total we take a sample of size m + m2 + · · · + mn —
namely, we have m values for x1, for each of these values we have
m values for x2 (for a total of m2), and so on. Call this sample
S.

2. Determine if S satisfies ϕ. We define this inductively as follows:

• S satisfies ψ(s1, . . . , sn) if M |= ψ(s0, . . . , sn).

• If Q = ∃, then S satisfies ϕ if there exists a value s for x1 in
S such that the corresponding sample for x2, . . . , xn satisfies
∀x2∃x3 . . . Q

′′Xnψ(x1, . . . , xn).

• If Q = ∀, then S satisfies ϕ if for all values s for x1 in S we
have that the corresponding sample for x2, . . . , xn satisfies
∃x2∀x2 . . . Q

′′Xnψ(x1, . . . , xn).

3. If S satisfies ϕ, output ϕ; otherwise, output ¬ϕ.

We will henceforth assume that Q = ∃ and Q′ = ∀, since otherwise
we can perform the same decision procedure on ¬ϕ. In order to prove
the probable correctness of this algorithm, we will first prove the fol-
lowing claim.
Claim: If m ≥ 1

ε ln 1
δ , then the algorithm described above gives a cor-

rect output with probability at least (1− δ)mn

.
We prove this claim by induction on n.

• n=0: In the base case, all atomic truths about atomic formulas
are given, from which we can easily decide which of ϕ and ¬ϕ
holds with correctness 1.

• n+1: We distinguish three cases: either (M ,D) 6|=ε ϕ (and then
(M ,D) |=ε ¬ϕ by Proposition 2.2.1), (M ,D) 6|= ¬ϕ, or (M ,D)
models both of them. Write ϕ = ∃x1(ϕ′(x1)).

– (M ,D) 6|=ε ϕ: then we have (classically) for every element
a ∈ M that (M ,D) 6|=ε ϕ

′(a). So, by induction hypothesis
we have that for every sampled value s for x1 with probab-
ility at least (1− δ)mn−1

that the corresponding sample for
x2, . . . , xn does not satisfy ϕ′. So, with probability at least

(
(1− δ)mn−1

)m
= (1− δ)mn
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we have that none of the m sampled values for x1 work,
i.e. that S does not satisfy ϕ; so with probability at least
(1− δ)mn

the (correct) answer ¬ϕ is outputted.

– (M ,D) 6|=ε ¬ϕ: Then we know that

Pr
D

[a ∈M | (M ,D) |=ε ¬ϕ′(a)] < 1− ε.

So the probability that all of the sampled values for x1 are
in this set is

< (1− ε)m ≤ (e−ε)m ≤ δ
where the last inequality follows per assumption on m. So,
with probability ≥ 1−δ we have for at least one of the values
s for x1 that (M ,D) 6|=ε ¬ϕ′(s). But in that case we have,
by induction hypothesis, that the corresponding sample for
x2, . . . , xn satisfies ϕ′ with probability at least (1− δ)mn−1

.
Therefore, we see that with probability at least

(1− δ)mn−1

(1− δ) ≥ (1− δ)mn

the sample satisfies ϕ and therefore the correct answer ϕ is
outputted.

– If (M ,D) models both ϕ and ¬ϕ, then both answers are
correct so this case is trivial.

This proves the claim. To finish the proof, let m ≥ 1
ε2

1
δ (2n)!. For

this fixed m, we can repeat the above proof with δ
mn instead of δ. To

this end, we need to show that m ≥ 1
ε ln mn

δ . But we have:

eεm >
(εm)

2n

(2n)!
≥
(

1
ε

1
δ (2n)!

)n
(εm)

n

(2n)!
=

1

ε

1

δ

(
1

ε

1

δ
(2n)!

)n−1

(εm)
n

≥ 1

ε

1

δ

(
1

ε

)n−1

(εm)
n

=
1

δ
mn.

So, we see that for this m the algorithm gives a correct output with
probability at least (1− δ

mn )m
n

. However, for every k ∈ ω we have that

(1− δ
k )k ≥ 1−δ, as can be seen from the binomial or Taylor expansion.

Thus, for m ≥ 1
ε2

1
δ (2n)! we have that the algorithm gives a correct

output with probability at least 1− δ, which finishes our proof.

As promised above, we will now give a counterexample to the lower
bound as originally given in Terwijn [17].
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Example 2.3.4. Let ε := 1
3 , δ := 1

2 and ϕ := ∃x∀y(R(y)). Consider
the model M on {1, . . . , 450} where R holds on {1, . . . , 299} and D is
the uniform distribution on N .

Observe that, in this case, 5 > 1
ε ln n

δ = 3 ln 4. So, we can take
m = 5. For fixed x ∈ M , we have that PrD [y ∈ M | R(y)] = 299

450 .

So the probability that a sample of size 5 for y satisfies R is
(

299
450

)5
.

Therefore, the probability that our sample for ϕ does not satisfy ϕ,
which is the same as saying that all of our 5 samples of size 5 for y do
not satisfy ∀y(R(y)), is equal to

(
1−

(
299

450

)5
)5

≈ 0.4998 <
1

2
.

Thus, the probability that our sample does satisfy ϕ is > 1
2 . However,

then the algorithm outputs the incorrect answer ϕ with probability
> 1

2 .

3
Earlier Approaches

3.1 Keisler’s Probability Logic

The first known work on first-order models equipped with probability
measures was done by H. Friedman, who studied a quantifier expressing
that “there exists non-measure 0 many”. He did not publish his work,
but it is nonetheless exhibited in Steinhorn [16]. Since there are not
many relations to our current work, we will not discuss this quantifier
in more detail.

The first probability logic we will compare ours to is the one intro-
duced by Keisler [10]. A slightly more recent survey of this logic can be
found in Keisler [11], which will be our main reference for this section.

Keisler introduces his logic as an extension to Lω1ω, in which count-
able conjunctions and disjunctions are allowed. In Keisler [11] and
Hoover [7], the fragment with finite conjunctions and disjunctions is
also discussed. It is this fragment that we will compare our logic to.
We begin by introducing the formulas, which (unlike in our logic) are
not the formulas of first-order logic.

Definition 3.1.1. The set of formulas of Keisler’s probability logic
LωP is the least set such that:

1. Each atomic formula (of first-order logic) is a formula of LωP .

2. If ϕ is a formula of LωP , then ¬ϕ is a formula of LωP .

3. If ϕ,ψ are formulas of LωP , then ϕ ∧ ψ, ϕ ∨ ψ and ϕ → ψ are
formulas of LωP .

4. If ϕ(x̄) is a formula of LωP and r ∈ [0, 1], then (Px̄ ≥ r)ϕ is a
formula of LωP .

21



22 3 Earlier Approaches

Definition 3.1.2. A probability model (M ,D) consists of a first-
order model M and a probability measure D such that all relations,
functions and constants are measurable (cf. Definition 2.1.2).1

Definition 3.1.3. Let ϕ = ϕ(x1, . . . , xn) be a formula of LωP , let
(M ,D) be a probability model and a1, . . . , an ∈ M . Then we induct-
ively define Keisler probabilistic truth (M ,D) |=K ϕ as follows.

1. Atomic formulas and logical connectives are treated as in first-
order logic, e.g. (M ,D) |=K ¬ϕ(ā) if (M ,D) 6|=K ϕ(ā).

2. (M ,D) |=K (P ȳ ≥ r)ϕ(ā, ȳ) if

Pr
Dm

[b1, . . . , bm ∈M | (M ,D) |=K ϕ(ā, b̄)] ≥ r.

Definition 3.1.4. We will say that a sentence ϕ of LωP is a Keisler-
tautology or is Keisler-valid (notation: |=K ϕ) if for all probability
models (M ,D) it holds that (M ,D) |=K ϕ.

Similarly, we call ϕ Keisler-satisfiable if there exists a probability
model (M ,D) such that (M ,D) |=K ϕ.

The first remark we make is that Keisler has the classical negation,
unlike our (weaker) negation. Therefore, his logic is not suitable for
learning processes — unlike ours, as discussed in Section 2.1.

Secondly, he allows the probability to vary per quantifier — while
in our logic, ε is fixed for the entire formula. At first sight, this makes
Keisler’s probability logic stronger; however, he does not have a classical
existential quantifier, which we do have. Quite remarkably, we will
show in Section 4.1 that ε-validity is at least as computationally hard
as Keisler-validity (in fact, we present a method to interpret variable
ε′ within ε-validity).

We also remark that the definition of probability model coincides
with our definition of ε-model, in the sense that if all relations are
measurable, then one can verify that all LωP -definable sets are also
measurable (see Keisler [11], Theorem 1.2.5). For us it is not enough to
require just the relations to be measurable, since this does not guarantee

1Keisler’s definition of probability model does not completely coincide with our
definition of an ε-model. In particular, he requires all singletons to be measurable
and extends the product measure with diagonal sets, to make sure the equality
relation is always measurable. In this paper, however, we will study his logic as if
he used our definition of a probability model — the differences are small and this
way we avoid having to treat more measure theory just to talk about LωP .
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the image of projections to be measurable — since Keisler does not have
the classical ∃, this is not a problem in LωP .

The reader has probably also observed that Keisler allows us to
quantify over multiple variables at once and take the probability over
the product measure. While both Keisler and Hoover reason that this is
only to get a clean notation and that the n-ary quantifier can be defined
using the unary quantifier, this only seems to hold for the infinitary case
with countable conjunctions and disjunctions, unlike the case we study.
Nonetheless, they also treat LωP as having this n-ary quantifier, which
is a further strengthening of the logic when compared to ours. The
expressive strength of LωP is demonstrated below.

Example 3.1.5. Let Q be a binary predicate and let

ϕ := (Px ≥ 2

3
)¬((Py ≥ 1)¬Q(x, y)).

Since LωP has the classical negation, ϕ expresses that the set of x such
that Q(x, y) occurs with strictly positive probability over y has measure
at least 2

3 .
We cannot express this in our language, since we do not have the

classical negation and can therefore not express that something occurs
with probability > 0 (indeed, if this were the case, we would be unable
to distinguish between something holding almost everywhere and its
negation holding on a set of positive measure, so we would lose our
PAC-learnability).

Surprisingly, we can recycle a lot of the ideas used in the proofs of
various properties of LωP , with varying amounts of modifications. For
example, the proof of the downwards Löwenheim-Skolem theorem in
Section 5.1 uses part of the construction from Keisler [11], while our
proof of the complexity of ε-validity in Section 4.1 uses ideas from a
construction by Hoover [7].

Keisler and Hoover also study what they call graded probability
models. Instead of requiring the n-ary relations to be Dn-measurable,
they require them to be measurable in some extension of Dn satisfying
some extra properties (for example, that every section is D-measurable,
which for Dn would follow from Fubini’s theorem). Graded probability
models occur most eminently in the study of a completeness theorem
for LωP in which it is used as an intermediate step. We could also
study graded probability models in our probability logic, but have de-
cided not to do so, since we consider ε-models to be the most natural
choice and did not pursue a proof-theoretic completeness theorem.
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3.2 Valiant’s Robust Logic

In [20], Valiant introduces a logic, which he calls a robust logic, that is
also inspired by PAC-learning. We will present his logic in a slightly
different way from the original presentation in [20], in order to more
clearly illustrate the connections with and differences from our logic.
We begin by introducing the models, which he calls scenes.

Definition 3.2.1. A scene over a finite set A for a set of relations
R = {R1, . . . , Rt} is a first-order model for these relations over the set
A . We denote ΠA,R for all scenes over A and R.

Thus, Valiant only considers finite models. This shows a clear con-
trast with our approach: we consider models of arbitrary cardinality
and restrict ourselves when we need to. Something else that is different
from our approach is that he does not consider probability distributions
over the model. Instead, he fixes a set A and assumes a probability
distribution over the scenes ΠA,R. We will return to this later, after we
have given the complete definition of the system.

We now move to the formulas, which he calls rules.

Definition 3.2.2. The set of rules of Valiant’s logic are of the form:

∀x1, . . . , xs[f(e1(Ri1), . . . , ek(Rik)) ≡ Ri0(x1, . . . , xs)]

where:

• Each ei(Ri1) is a first-order formula containing only quantifi-
ers and the relation Ri1 , which only has free variables among
x1, . . . , xs.

• f represents a Boolean function f : {0, 1}k → {0, 1}.
The idea of such a rule is that it expresses that some expression

involving a given Boolean function f is equivalent to the relation Ri0
for many of the scenes over some fixed A , according to some given
probability distribution D on ΠA,R. An easy example of a rule is

∃y(R1(y, x)) ∨ ∀y1∃y2(R2(y1, y2, x)) ≡ R3(x)

(where the function f is disjunction).
Observe that Valiant only allows relations in his language, while we

do not have any restrictions (except in theorems where this is necessary,
but we do not restrict ourselves until we need to).

Finally, we introduce when a rule holds. More precisely, we say
what it means for a rule to be ε-accurate.
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Definition 3.2.3. Let A be a fixed finite set. Let q be a rule with free
variables x1, . . . , xs, let σ ∈ ΠA,R be a scene and let a1, . . . , as ∈ A . We
define the function lhs(q, σ, a1, . . . , as) by letting it have value 1 if the
left-hand side of the equivalence in q holds when evaluated in the scene
σ and with a1, . . . , as substituted for the variables x1, . . . , xs, and value
0 otherwise. We define rhs(q, σ, s1, . . . , as) similarly for the right-hand
side.

We now define the false positive and false negative functions
err+ and err− by letting err+(q, σ, a1, . . . , as) have value 1 if we have
lhs(q, σ, a1, . . . , as) = 1 but rhs(q, σ, a1, . . . , as) = 0, and defining err−

with the roles of lhs and rhs exchanged.
Finally, we define the error eD(q) of a rule q according to the

distribution D on ΠA,R by

max
a1,...,as

∑

σ∈ΠA,R

Pr
D

[σ](err+(q, σ, a1, . . . , as) + err−(q, σ, a1, . . . , as)).

Now a rule q is called ε-accurate in the distribution D if eD(q) ≤ ε.

This shows that Valiant’s logic is vastly different from ours: Vali-
ant has a probability distribution over the models instead of over the
elements of a fixed model. Furthermore, instead of talking about the
approximate truth of statements, it talks about the approximate truth
of rules.

Nonetheless, there are parallels — most notably, Valiant’s logic has
a PAC-learning property, although it is different from ours. In [20]
Valiant shows that one can PAC-learn the function f (with suitable
restrictions on the class of functions considered); that is, given a rule
with an unknown Boolean function f and an unknown distribution D
over the scenes, there exists a probabilistic algorithm that with high
probability gives us an approximation f ′ such that the rule q with f ′

substituted for f is ε-accurate in D.
So, the logic given above is also motivated by PAC-learning, but

instead of trying to learn if a statement holds, it is about learning a
Boolean function. While the motivation of our logic might be closer to
Valiant than to Keisler, it should be clear that our logic is more like
LωP than it is like Valiant’s logic.
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4
Computability Theory

Assumption In this chapter, we will only be looking at models (M ,D)
that are ε-models for all rational ε. For example, in this chapter we
will call ϕ an ε-tautology if and only if for all (M ,D) which are an
ε′-model for all rational ε′ we have that (M ,D) |=ε ϕ.

4.1 Validity Is Π1
1-Hard

In this section we will show that for every rational ε, the set of ε-
tautologies is Π1

1-hard.1 This strengthens a result by Terwijn [18], in
which it was shown that probability logic is Σ0

1-hard.
We will first by showing that for different rational ε0, ε1 ∈ (0, 1) the

ε0-tautologies many-one reduce to the ε1-tautologies. We will begin
with reducing to bigger ε1. To do this, we refine the argument by
Terwijn [18], where it is shown that the 0-tautologies many-one reduce
to the ε-tautologies for ε ∈ [0, 1).

Proposition 4.1.1. Let L be a first-order language not containing
equality. Then, for every rational 0 ≤ ε0 ≤ ε1 < 1, the ε0 tautologies
many-one reduce to the ε1 tautologies.

Proof. Let m
n = 1−ε1

1−ε0 . Let ϕ be a formula in prenex normal form. We
use induction over the structure of ϕ to define a many-one reduction f .
For propositional formulas and existential quantifiers, there is nothing
to be done and we use the identity map.

Next, we consider the universal quantifiers. Let ϕ = ∀x(ψ(x)). Our
idea will be to introduce new unary predicates, so we can strengthen

1Π1
1 consists of those sets A ⊆ ω such that A is definable by a Π1

1-formula; that
is, a formula ∀Q(ϕ(Q,n)) where Q is a second-order predicate variable and ϕ is a
first-order formula.

27
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the universal quantifier. We will make these predicates split the model
into disjoint parts; if we split this into just the right amount of parts
(in this case, n), then we can choose m of these parts to get just the
right amount of strengthening.

So, we introduce new unary predicates X1, . . . , Xn. We define the
sentence n-split by

∀x((X1(x) ∨ . . . ∨Xn(x)) ∧
∧

1≤i<j≤n
¬(Xi(x) ∧Xj(x)))

Now, we define f(ϕ) to be the formula

¬n-split ∨
∨

i1,...,im

∀x((Xi1(x) ∨ · · · ∨Xim(x)) ∧ f(ψ)(x))

where the disjunction is over all subsets of sizem from {1, . . . , n}. Thus,
f(ϕ) expresses that one can pick m of the n parts and that ψ(x) holds
often enough when restricted to these parts of the model.

We claim:

ϕ is an ε0-tautology if and only if f(ϕ) is an ε1-tautology.

Namely, first assume that ϕ is an ε0-tautology and also assume that
(M ,D) 6|=ε1 ¬n-ϕ-split. Then the universal quantifiers hold classically,
so (M ,D) splits into n disjoint parts. We prove, by induction, that
f(ϕ) is an ε1-tautology.

The only non-trivial case is the case for the universal quantifier. So,
let ϕ = ∀x(ψ(x)). Then, we can find i1, . . . , im such that Xi1 , . . . , Xim

cover at least m
n of the part of the model on which

(M ,D) |=ε0 ψ(x)

holds (by taking the m largest ones). Furthermore, we find (by induc-
tion hypothesis) that

{a ∈M | (M ,D) |=ε0 ψ(a)} ⊆ {a ∈M | (M ,D) |=ε1 f(ψ)(a)}.

Because ϕ is assumed to be an ε0-tautology the left-hand side has
measure ≥ 1− ε0, so we find that

Pr
D

[a ∈M | (M ,D) |=ε1 (Xi1(a) ∨ · · · ∨Xim(a)) ∧ f(ψ)(a)]

≥ m

n
(1− ε0) = 1− ε1.
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Therefore, (M ,D) |=ε1 f(ϕ) and we thus find that f(ϕ) is an ε1-
tautology.

Conversely, suppose (M ,D) 6|=ε0 ϕ. Let (M ′,D ′) be the model
consisting of n copies M1, . . . ,Mn of (M ,D), each with weight 1

n . That
is, D ′ is the sum of n copies of 1

nD (see Definition 1.1.5). Relations
are defined just as on M ; that is, for an n-ary relation R we define
R(a1, . . . , an) by viewing all ai as elements of M . The same holds for
the arguments of functions; for the codomain we choose an arbitrary
copy. Finally, we let each Xi be true exactly on the copy Mi.

Then we see that (M ′,D ′) 6|= ¬n-split. Assume (M ′,D ′) |=ε1 f(ϕ),
we will show that this implies (M ,D) |=ε0 ϕ and thus leads to a con-
tradiction. Again, the only interesting case is the universal one. Thus,
assume ϕ = ∀x(ψ(x)). Fix i1, . . . , im such that

(M ′,D ′) |=ε1 ∀x((Xi1(x) ∨ · · · ∨Xim(x)) ∧ f(ψ)(x)).

Then, using the induction hypothesis, it is easily verified that

Pr
D

[a ∈M | (M ,D) |=ε0 ψ(a)]

=
n

m
Pr
D

[a | (M ,D) |=ε1 (Xi1(a) ∨ · · · ∨Xim(a)) ∧ f(ψ)(a)]

≥ n

m
(1− ε1) = 1− ε0

and we therefore see that (M ,D) |=ε0 f(ϕ), which leads to the desired
contradiction. Thus, (M ′,D ′) 6|=ε0 f(ϕ) so f(ϕ) is not an ε1-tautology,
as desired.

Next, we consider the reduction in the other direction.

Proposition 4.1.2. Let L be a first-order language not containing
equality. Then, for every rational 0 < ε1 ≤ ε0 ≤ 1, the ε0 tautologies
many-one reduce to the ε1 tautologies.

Proof. Let m
n = ε0−ε1

ε0
. Let ϕ be a formula in prenex normal form.

We again use induction over the structure of ϕ to define a many-one
reduction f . We only change the case for the universal quantifier.
Let ϕ = ∀x(ψ(x)). Our idea will again be to introduce new unary
predicates, but this time so we can weaken the universal quantifier.

Again introduce new unary predicates X1, . . . , Xn. We define f(ϕ)
to be the formula:

¬n-split ∨
∨

i1,...,im

∀x(Xi1(x) ∨ · · · ∨Xim(x) ∨ f(ψ)(x))
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where the disjunction is again over all subsets of size m from {1, . . . , n}.
We claim:

ϕ is an ε0-tautology if and only if f(ϕ) is an ε1-tautology.

Namely, first assume that ϕ is an ε0-tautology and also assume that
(M ,D) 6|=ε1 ¬n-ϕ-split. The only non-trivial case is again the case for
the universal quantifier. So, let ϕ = ∀x(ψ(x)). Then, we can find
i1, . . . , im such that Xi1 , . . . , Xim cover at least m

n of the part of the
model on which

(M ,D) 6|=ε0 ψ(x)

holds. Because ϕ is assumed to be an ε0-tautology we therefore find
that

Pr
D

[a ∈M | (M ,D) |=ε1 Xi1(a) ∨ · · · ∨Xim(a) ∨ f(ψ)(a)]

≥ (1− ε0) + ε0 ·
m

n
= 1− ε1.

So, (M ,D) |=ε1 f(ϕ) and we therefore find that f(ϕ) is an ε1-tautology.
Conversely, suppose (M ,D) 6|=ε0 ϕ. Let (M ′,D ′) be the model

consisting of n copies M1, . . . ,Mn of (M ,D), as above. Assume that
(M ′,D ′) |=ε1 f(ϕ), we will show that this leads to a contradiction.
Again, the only interesting case is the universal one. Thus, assume
ϕ = ∀x(ψ(x)). Fix i1, . . . , im such that

(M ′,D ′) |=ε1 ∀x(Xi1(x) ∨ · · · ∨Xim(x) ∨ f(ψ)(x)).

Then, using the induction hypothesis, it is easily verified that

Pr
D

[a ∈M | (M ,D) |=ε0 ψ(a)]

= Pr
D

[a ∈M | (M ,D) |=ε1 Xi1(a) ∨ · · · ∨Xim(a) ∨ f(ψ)(a)]

− m

n
(1− Pr

D
[a ∈M | (M ,D) |=ε0 ψ(a)])

and a straightforward calculation then shows that

Pr
D

[a ∈M | (M ,D) |=ε0 ψ(a)] ≥ 1− ε0,

which leads to the desired contradiction.

Combining the two propositions above, we come to the following
conclusion.
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Theorem 4.1.3. Let L be a first-order language not containing equal-
ity. Then, for rational ε0, ε1 ∈ (0, 1), the ε0-tautologies many-one re-
duce to the ε1-tautologies.

Remark 4.1.4. Observe that we can perform these reductions per
quantifier. In particular, we can talk about what it means for a formula
with variable ε (for each quantifier separately) to be a tautology. This
way, we get something like Keisler’s probability logic (see Section 3.1);
however, remember that we still have our non-classical negation (unlike
Keisler).

To show that the set of ε-tautologies is indeed Π1
1-hard, we adapt a

proof by Hoover [7] which shows that LωP is Π1
1-complete. To do this,

he shows that we can define the natural numbers within probability
logic. We will present our proof after the next definition.

Definition 4.1.5. Let ϕ be a formula in prenex normal form and N a
unary predicate. Then ϕN , or ϕ relativised to N , is the formula where
each ∀x(ψ(x)) is replaced by ∀x(N(x) → ψ(x)) and each ∃x(ψ(x)) is
replaced by ∃x(N(x) ∧ ψ(x)).

Proposition 4.1.6. There exists finite theories T, T ′ in the language
with constant symbol 0, unary relations N(x), binary relations x ≤ y,
x = y,2 S(x) = y and R(x, y), and ternary relations x + y = z and
x · y = z such that, if we let f be the reduction from 0-tautologies to 1

2 -
tautologies from Proposition 4.1.1, for every first-order formula ϕ(n),
containing a new predicate symbol Q, the following are equivalent:

1. |= 1
2
f(¬(

∧
T )) ∨ ¬(

∧
T ′) ∨ f(¬ϕ(Sn(0)));

2. N |= ∀Q(¬ϕ(Q,n)).

Proof. We give an adaptation of the proof by Hoover [7] for LωP . We
first remark that for every formula ψ we have that (M ,D) 6|=0 ¬ψ if
and only if all universal quantifiers hold classically and all existential
quantifiers hold on a set of positive measure. Likewise, (M ,D) 6|= 1

2
¬ψ

holds if and only if all universal quantifiers hold classically and all
existential quantifiers hold on a set of measure strictly greater than 1

2 .
Inspired by this, we form the theories T and T ′. T consists of

Robinson’s Q relativised to N , axioms specifying that the arithmetical

2Here we do not mean true equality, but rather a binary relation that we will
use to represent equality.
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relations almost only hold on N , and some special axioms (the last four
of the enumeration below). Thus, we put the following axioms in T :

For all equality axioms ψ: ψN . We now give the axioms for the suc-
cessor function:

∀x∀y(S(x) = y → (N(x) ∧N(y)))

(∀x∃y(S(x) = y))N

(∀x∀y∀u∀v((S(x) = y ∧ S(u) = v ∧ x = u)→ y = v))N

(∀x(¬S(x) = 0))N

(∀x(x = 0 ∨ ∃y(S(y) = x)))N .3

In the axioms below, we will leisurely denote by ψ(S(x)) the formula
∀y(S(x) = y → ψ(y)). Next up is the ordering:

(∀x∀y(x ≤ y → (N(x) ∧N(y))))

(∀x(x ≤ x))N

(∀x∀y(x ≤ y → y ≤ x))N

(∀x∀y∀z(x ≤ y → y ≤ z → x ≤ z))N

(∀x∀y(x ≤ y ∨ y ≤ x))N

(∀x(0 ≤ x))N

(∀x∀y(x ≤ S(x) ∧ (x ≤ y ∧ y ≤ S(x))→ (x = y ∨ S(x) = y)))N .

We proceed with the inductive definitions of + and ·:

(∀x∀y∀z(x+ y = z → (N(x) ∧N(y) ∧N(z))))

(∀x(x+ 0 = x))N

(∀x∀y(x+ S(y) = S(x+ y)))N

(∀x∀y∀z(x · y = z → (N(x) ∧N(y) ∧N(z))))N

(∀x(x · 0 = 0))N

(∀x∀y(x · S(y) = (x · y) + x))N .

We also want to guarantee that N has positive weight:

∃x(N(x))
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Finally, we introduce a predicate R. This predicate is meant to function
as a sort of ‘padding’. The goal of this predicate is to force the measure
of a point Sn(0) to be equal to the measure of {x | N(x) ∧ x > Sn(0)}
(the precise use will be made clear in the proof below):

(∀x∀y(¬R(x, y)))N .

The last two axioms will be in T ′ instead of in T , since the idea is that
this will be evaluated for ε = 1

2 while the rest will be evaluated for
ε = 0:

∀x(N(x)→ ∃y(R(x, y) ∨ x = y))

∀x(N(x)→ ∃y(¬(R(x, y) ∨ x < y)).

We will now show that these axioms indeed to what we promised.
First, let n ∈ ω and assume N 6|= ∀Q(¬ϕ(Q,n)). Fix a predicate Q such
that N 6|= ¬ϕ(Q,n). Now take the model M := ω × {0, 1} to be the
disjoint union of two copies of ω, where we define S,+, ·,≤, 0 as usual
on ω × {0} and undefined elsewhere. Let

N := ω × {0} and R := {((a, 0), (b, 1)) | µk[2k+1 > 3a+1] 6= b}.

We let Q(a, 0) hold if N |= Q(n). Finally, define D by

D(a, 0) = D(a, 1) :=
1

3a+1
.

Since all points have positive measure, it is now directly verified that

(M ,D) 6|=0 ¬(
∧
T ) ∨ ¬ϕ(Sn(0)).

Furthermore, if we let a ∈ ω and denote b for µk[2k+1 > 3a+1] then we
have that

Pr
D

[y ∈M | (M ,D) |= R((a, 0), y) ∨ (a, 0) = y]

=
1

2
− 1

2b+1
+

1

3a+1

>
1

2
3We do not strictly need this last axiom, but we have added it anyway so that

all axioms of Robinson’s Q are in T .
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while we also have that

Pr
D

[y ∈M | (M ,D) |= 1
2
¬(R((a, 0), y) ∨ (a, 0) < y)]

= 1− (
1

2
− 1

2b+1
+

1

2 · 3a+1
)

>
1

2

so we see that (M ,D) 6|= 1
2
¬(
∧
T ′). But then we see from (the proof

of) Theorem 4.1.1 that there is a model (N ,E) such that

(N ,E) 6|= 1
2
f(¬(

∧
T )) ∨ ¬(

∧
T ′) ∨ f(¬ϕ(Sn(0))).

Conversely, assume that statement 1 does not hold. Again, from
(the proof of) Theorem 4.1.1 we see that

(M ,D) 6|=0 ¬(
∧
T ) ∨ ¬ϕ(Sn(0)) and (M ,D) 6|= 1

2
¬(
∧
T ′).

From the three axioms involving R, we see that for every m ∈M with
M |= N(m):

Pr
D

[a ∈M |M |= m = a] >
1

2
− Pr

D
[a ∈M |M |= R(m, a)]

> Pr
D

[a ∈M |M |= m < a].

But then we inductively see that

Pr
D

[{0, . . . , Sk(0)}] >
(

1− 1

2k+1

)
Pr
D

[N ]

which shows that all weight of N rests on X := {Sn(0) | n ∈ ω}. From
the discussion at the beginning of this proof, we therefore easily that
(M ,D) 6|=0 ¬ϕ(Sn(0)) implies that also (M �X,D�X) 6|=0 ¬ϕX(n).

However, we can directly verify that M �X is isomorphic to the
standard natural numbers N = (ω, S,+, ·,≤). So, by transferring the
predicate Q from M to N we find that indeed N 6|= ∀Q(¬ϕ(Q,n)).

Putting this together, we reach our conclusion.

Theorem 4.1.7. For rational ε ∈ (0, 1), the set of ε-tautologies is
Π1

1-hard.

In particular, we see that the ε-tautologies are not computably enu-
merable. This also implies that there is no effective calculus for our
logic.
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4.2 Satisfiability Is Π0
1-Hard

In Section 4.1 above, it was shown that the set of ε-valid sentences
is Π1

1-hard for rational ε. Here, we will study the complexity of the
satisfiability problem. Observe that, unlike in the classical case, satis-
fiability is not complementary to validity (classically, ϕ is satisfiable if
and only if ¬ϕ is not a tautology).

Example 4.2.1. The sentence ϕ = ∃x(R(x)) ∧ ∀x(¬R(x)) is 0-satisfi-
able, but its negation ∀x(¬R(x)) ∨ ∃x(R(x)) is a 0-tautology (indeed,
it is even a classical tautology).

As for validity, we first present some reductions between different
ε. We will assume the reader has already read Section 4.1 and will
therefore not present the proofs in full detail, since most of the ideas
are the same as in the proof for validity.

Proposition 4.2.2. Let L be a first-order language not containing
equality. Then, for every rational 0 ≤ ε0 ≤ ε1 < 1, ε0-satisfiability
many-one reduces to ε1-satisfiability.

Proof. Let ε1 = 1 − a
n and let m

n = 1−ε1
1−ε0 . Let ϕ be a formula in

prenex normal form. As before, we use induction over the structure of
ϕ to define a many-one reduction f , observing we only need to consider
universal quantifiers.

Therefore, let ϕ = ∀x(ψ(x)). Again introduce new unary predicates
X1, . . . , Xn. As before, we want a formula like n-split, but need to do
slightly more work to make this work for satisfiability. For 1 ≤ i ≤ n,
define

Yi(x) := Xi(x) ∧
∧

1≤j≤n,j 6=i
¬Xj(x).

Then the Yi define disjoint sets.
We now define the sentence a-n-split by:

∧

I⊆{1,...,n},#I=a
∀y
(∨

i∈I
Yi(y)

)
.

Then one can verify that, if all of the sets Xi are disjoint sets of measure
exactly 1

n (and hence the same holds for the Yi), then a-n-split is ε1-
true. Conversely, we claim that if a-n-split holds, then the sets Yi all
have measure 1

n .
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Namely, assume there is a set of measure strictly less than 1
n . De-

termine a sets Yi with minimal measure; say with indices from the set I.
Then, since a-n-split holds, PrD [

⋃
i∈I Yi] ≥ a

n . But at least one of the
Yi with i ∈ I has measure strictly less than 1

n , so also one of them needs
to have measure strictly greater than 1

n . However, PrD [
⋃
i6∈I Yi] ≤ n−a

n ,

so there is a Yj with j 6∈ I having measure ≤ 1
n . This contradicts the

minimality. So, all sets Yi have measure at least 1
n and since they are

disjoint they therefore have measure exactly 1
n .

In particular we see that, if a-n-split holds, then the Yi together
disjointly cover a set of measure 1.

Now define f(ϕ) to be the formula

a-n-split ∧
∧

i1,...,im

∀x((Yi1(x) ∨ · · · ∨ Yim(x)) ∧ f(ψ)(x))

where the conjunction is over all subsets of size m from {1, . . . , n}.
If ϕ is ε0-satisfiable by some model (M ,D), we can form the model

consisting of n copies, each with weight 1
n (as in the case for tautologies)

and check that this model ε1-satisfies f(ϕ). Conversely, assume f(ϕ) is
ε1-satisfied by some model (M ,D), then we can inductively show that
this same model also ε0-satisfies ϕ. Namely, assume it does not. By
induction hypothesis, we then have:

Pr
D

[x ∈M | (M ,D) |=ε1 f(ψ)(x)] < 1− ε0.

But by taking those m of the Yi (say Yi1 , . . . , Yim) which have the
smallest intersection with this set, we find that

Pr
D

[x ∈M | (M ,D) |=ε1 (Yi1∨· · ·∨Yim)∧f(ψ)(x)] <
m

n
(1−ε0) = 1−ε1

which contradicts our choice of (M ,D).

Proposition 4.2.3. Let L be a first-order language not containing
equality. Then, for every rational 0 < ε1 ≤ ε0 ≤ 1, ε0-satisfiability
many-one reduces to ε1-satisfiability.

Proof. Let ε1 = 1− a
n and let m

n = ε0−ε1
ε0

. Again, we only consider the
non-trivial case where ϕ is a universal formula ∀x(ψ(x)). We define
f(ϕ) to be the formula:

a-n-split ∧
∧

i1,...,im

∀x(Yi1(x) ∨ · · · ∨ Yim(x) ∨ f(ψ)(x))
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where the conjunction is again over all subsets of size m from {1, . . . , n}.
As above, one can check that if (M ,D) ε0-satisfies ϕ, that we can take
a model consisting of n copies which will ε1-satisfy f(ϕ). Conversely,
assume that (M ,D) ε1-satisfies f(ϕ) and assume that

Pr
D

[x ∈M | (M ,D) |=ε1 f(ψ)(x)] < 1− ε0.

By taking those m of the Yi (say Yi1 , . . . , Yim) which have the largest
intersection with this set, we find that

Pr
D

[x ∈M | (M ,D) |=ε1 Yi1 ∨ · · · ∨ Yim ∨ f(ψ)(x)]

≤ Pr
D

[x ∈M | (M ,D) |=ε1 f(ψ)(x)]

+
m

n
(1− Pr

D
[x ∈M | (M ,D) |=ε1 f(ψ)(x)])

and a straightforward calculation then shows that

Pr
D

[x ∈M | (M ,D) |=ε0 ψ(x, b1, . . . , bt)] < 1− ε1,

a contradiction. So, (M ,D) also ε0-satisfies ϕ.

Theorem 4.2.4. Let L be a first-order language not containing equal-
ity. Then, for rational ε0, ε1 ∈ (0, 1), ε0-satisfiability many-one reduces
to ε1-satisfiability.

Now we can interpret arithmetic, like we did for tautologies. How-
ever, this time we can only interpret a weaker fragment, namely the
universal fragment.

Proposition 4.2.5. There exists finite theories T, T ′ in the language
with constant symbol 0, unary relations N(x), binary relations x ≤ y,
x = y,4 S(x) = y and R(x, y), and ternary relations x + y = z and
x · y = z such that, if we let f be the reduction from 0-satisfiability
to 1

2 -satisfiability from Proposition 4.2.2, for every universal formula
ϕ = ϕ(n), the following are equivalent:

1. f(
∧
T ) ∧ (

∧
T ′) ∧ ϕ(Sn(0)) is 1

2 -satisfiable;

2. N |= ϕ(n).

4Here we do not mean true equality, but rather a binary relation that we will
use to represent equality.
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Proof. This is proven in a similar way as Proposition 4.1.6. We take
T as in that proposition, but remove ∃x(N(x)) from it. We add the
formulas ∀x(N(x)) and ∀x(N(x)) to T ′ (defining that N has weight
exactly 1

2 ), and replace the formulas

∀x(N(x)→ ∃y(R(x, y) ∨ x = y))

∀x(N(x)→ ∃y(¬(R(x, y) ∨ x < y))

by

∀x(N(x) ∧ ∀y(R(x, y) ∨ x = y))

∀x(N(x) ∧ ∀y(¬(R(x, y) ∨ x < y)).

One can then follow the proof of Proposition 4.1.6 with three minor
modifications:

1. The measure D on ω × {0, 1} becomes

D(a, 0) = D(a, 1) :=
1

2n+2
.

2. We let
R := {((a, 0), (b, 1)) | a 6= b}.

3. All strict inequalities become non-strict inequalities.

From this, we reach our conclusion.

Theorem 4.2.6. For rational ε ∈ (0, 1), the set of ε-satisfiable sen-
tences is Π0

1-hard.

Proof. Use the reduction from the previous proposition, combined with
the fact that the universal fragment of arithmetic is Π0

1-hard (for this
last statement, see for example Odifreddi [15, p368]).

5
Model Theory

5.1 A Downward Löwenheim-Skolem Theo-
rem

In this section, we will be prove a downward Löwenheim-Skolem The-
orem for probability logic. We begin with the necessary definitions.

Definition 5.1.1. We will call a measure ν on a σ-algebra B of subsets
of N a submeasure of a measure µ on a σ-algebra A of subsets of
some set M ⊇ N if for every B ∈ B there exists an AB ∈ A such that
B = AB ∩N and µ(AB) = ν(B).

Definition 5.1.2. An ε-submodel of an ε-model (M ,D) is an ε-
model (N ,E) over the same language such that:

• N is a submodel of M ,

• E is a submeasure of D.

We will denote this by (N ,E) ⊂ε (M ,D).

Definition 5.1.3. An elementary ε-submodel of an ε-model (M ,D)
is an ε-submodel (N ,E) such that, for all formulas ϕ = ϕ(x1, . . . , xn)
and sequences a1, . . . , an ∈ N we have:

(M ,D) |=ε ϕ(a1, . . . , an)⇔ (N ,E) |=ε ϕ(a1, . . . , an).

We will denote this by (N ,E) ≺ε (M ,D).

Before proving a downward Löwenheim-Skolem Theorem, we first
remark that we cannot hope to prove an exact analogue of the theorem
in classical logic. This is because in the next example we will show that
there are sentences which are satisfied by some uncountable model, but
not by any countable model.

39



40 5 Model Theory

Example 5.1.4. Let ϕ := ∀x∀y(R(x, y) ∧ ¬R(x, x)). Then ϕ is 0-
satisfiable; for example, take the unit interval [0, 1] equipped with the
Lebesgue measure and take R(x, y) to be x 6= y.

However, it does not have any countable 0-models. Namely, if we
have (M ,D) |=0 ϕ, then for almost every x ∈M the set

Bx := {y ∈M | (M ,D) |=0 ¬R(x, y) ∨R(x, x)}

has measure zero. However, x ∈ Bx, so on one hand the set
⋃
x∈M Bx

contains almost every x and therefore has measure 1, but it is also the
union of countable many sets of measure 0 and hence has measure 0, a
contradiction.

Using the reduction from Proposition 4.2.2, we now also find for
every rational ε ∈ [0, 1) a sentence ϕε which is only ε-satisfiable in
uncountable models.

The example has shown that we cannot always find countable ele-
mentary submodels. However, we can find such submodels of cardinal-
ity 2ω, as we will show next. Our proof is inspired by the very briefly
stated proof in Keisler [11]. We have made various modifications to be
able to apply the construction to our logic and to be able to extract
more information from the construction afterwards.

Theorem 5.1.5 (Downward Löwenheim-Skolem theorem for
probability logic). Let L be a countable first-order language, possibly
containing equality, over a signature not containing function symbols.
Let (M ,D) be an ε-model and let X ⊆M be of cardinality at most 2ω.
Then there exists

(N ,E) ≺ε (M ,D)

such that X ⊆ N and N is of cardinality at most 2ω.

Proof. The idea of the proof is to select one point from every equivalent
part of the model: that is, a subset Y ⊆ M such that for all x, y ∈ Y
we have for all formulas ϕ = ϕ(x) that (M ,D) |=ε ϕ(x) holds if and
only if (M ,D) |=ε ϕ(y) holds. We will show that we can do this in
such a way that we need at most 2ω many points.

Let R = R(x1, . . . , xn) be a relation. By Definition 2.1.2, we see
that the set RM is a Dn-measurable set. Thus, Definition 1.1.8 and
Proposition 1.1.10 tell us that RM can be formed using countable uni-
ons and intersections of Cartesian products of at most countably many
D-measurable sets. This expression need not be unique — so, for each
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relation R, pick one such expression t and form the set ΓR consisting
of the D-measurable sets occurring as edges of Cartesian products in
this expression. Let Γ be

⋃
ΓR together with {c} for each constant c.

Since Γ is countable, we can fix an enumeration B0, B1, . . . of it.
For each a ∈ 2ω, we define:

Ea :=
⋂

ai=1

Bi ∩
⋂

ai=0

(M \Bi).

Then the Ea are directly verified to be equivalent parts, in the sense
that for every formula ϕ = ϕ(x) and for all x, y ∈ Ea we have that
(M ,D) |=ε ϕ(x) holds if and only if (M ,D) |=ε ϕ(y) holds. Namely,
if R is a box B0 × B1 of two D-measurable sets, then we can verify
this fact using induction over the structure of formulas; furthermore,
we can also use induction over the formulas to check that this property
is preserved under unions and complements.

From each non-empty Ea, pick one point xa. Now let N be the set
X ∪ {xa | a ∈ 2ω}. Clearly, N then has cardinality at most 2ω.

Finally, for each D-measurable B such that

∀a ∈ 2ω∀x, y ∈ Ea(x ∈ B ⇔ y ∈ B), (5.1)

we let E(B∩N ) := D(B). We claim: (N ,E) (with relations restricted
to N ) satisfies the required properties.

First, observe that E is well-defined. Namely, let B 6= C be D-
measurable sets satisfying (5.1). Without loss of generality we may
assume there is some x ∈ B with x 6∈ C. Let a ∈ 2ω be such that
x ∈ Ea. Then xa ∈ B, but xa 6∈ C. So B ∩N 6= C ∩N .

Next, we prove that (N ,E) ≺ε (M ,D). We let ϕ be a formula in
prenex normal form (using Proposition 2.1.5). We use induction over
the number of quantifiers to show that, for all sequences b1, . . . , bn ∈ N
and for every formula ϕ = ϕ(x1, . . . , xn), we have

(M ,D) |=ε ϕ(b1, . . . , bn)⇔ (N ,E) |=ε ϕ(b1, . . . , bn).

The base case is clear.
For the existential case, observe that

(N ,E) |=ε ∃x(ψ(x, b1, . . . , bn))

clearly implies that this also holds in (M ,D). For the converse, assume

(M ,D) |=ε ∃x(ψ(x, b1, . . . , bn)).
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Let x ∈ M be such that (M ,D) |=ε ψ(x, b1, . . . , bn), and let a ∈ 2ω

be such that x ∈ Ea. Then (since each Ea is an equivalent part, as
described above) we also have (M ,D) |=ε ψ(xa, b1, . . . , bn). Using the
induction hypothesis, we therefore find (N ,E) |=ε ψ(xa, b1, . . . , bn).
Since xa ∈ N this implies that (N ,E) |=ε ∃x(ψ(x, b1, . . . , bn)).

For the universal case, let ϕ = ∀x(ψ(x, x1, . . . , xn)). Let

B := {x ∈M | (M ,D) |=ε ψ(x, b1, . . . , bn)}.

Then we we find that

C := {x ∈ N | (N ,E) |=ε ψ(x, b1, . . . , bn)}
= {x ∈ N | (M ,D) |=ε ψ(x, b1, . . . , bn)}
= {x ∈M | (M ,D) |=ε ψ(x, b1, . . . , bn)} ∩N
= B ∩N .

From this, we see that E(C) = D(B), and therefore we see

(M ,D) |=ε ∀x(ψ(x, b1, . . . , bn))⇔ (N ,E) |=ε ∀x(ψ(x, b1, . . . , bn)).

This finishes our induction.
Finally, we remark that we can now easily see that (N ,E) is an

ε-model (cf. Definition 2.1.2). For every formula ϕ = ϕ(x1, . . . , xn)
and every sequence a1, . . . , an−1 ∈ N we have:

Bϕ := {an ∈ N | (N ,E) |=ε ϕ(a1, . . . , an)}
= {an ∈M | (M ,D) |=ε ϕ(a1, . . . , an)} ∩N

and since the right-hand side is the intersection of a D-measurable set
and N , it is easily verified that Bϕ is E -measurable. That relations
are measurable follows directly from the construction; for constants c
use the fact that {c} ∈ Γ and therefore there exists an a ∈ 2ω such that
Ea = {c}.

Thus, we see that (N ,E) is an elementary ε-submodel of (M ,D).

Remark 5.1.6. The proof given above uses the full measurability con-
dition on ε-models (cf. Section 2.1, remark 7). We remark that we can
also prove the theorem without using that the relations are measurable,
by more closely following the proof of Keisler [11]. However, we need
our proof to be able to derive Theorem 5.2.10 below.
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In fact, by varying ε, we can easily see that the following strength-
ening also holds.

Theorem 5.1.7 (Downward Löwenheim-Skolem Theorem for
variable ε). Let L be a first-order language as above. Let A ⊆ [0, 1],
let (M ,D) be an ε-model for all ε ∈ A and let X ⊆M be of cardinality
at most 2ω. Then there exists (N ,E) such that (N ,E) ≺ε (M ,D) for
all ε ∈ A.

Proof. Using the same proof as for Theorem 5.1.5.

5.2 Satisfiability and Lebesgue measure

The construction from Theorem 5.1.5 gives us an unknown probability
measure on 2ω. However, we can say something more about the σ-
algebra of measurable sets of E above: for example, that it is countably
generated. We will use this and other facts to show that every ε-
satisfiable set T of sentences has an ε-model on [0, 1] equipped with the
Lebesgue measure. This model need not be equivalent to the original
model satisfying the sentences in T — the Lebesgue model will generally
satisfy more formulas.

We cannot directly show that the measure space is isomorphic to
the Lebesgue measure on [0, 1] — we need to make some modifications
to the model first. As a first step, we show that each set ε-satisfiable
set T of sentences is satisfied in some Borel measure on the Cantor set
2ω (equipped with the usual Euclidean topology). For this, we first
need an auxiliary theorem.

Theorem 5.2.1. Let D0 be a Borel probability measure and let M
be a first-order model such that all relations and functions are Dn

0 -
measurable1. Let D be the completion of D0. Then (M ,D) is an
ε-probability model for every ε ∈ [0, 1].

Proof. What remains to be proven is that all definable sets of dimension
1 are D-measurable (see Definition 2.1.2).

Since every relation is Dn
0 -measurable, it is in particular Borel and

therefore analytic. We now verify that every definable set is analytic,

1Observe that this is strictly stronger than saying that they should be Borel, since
the product of Borel measures might not be a Borel measure, see e.g. Bogachev [5,
Section 7.6].
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using induction over the number of quantifiers in prenex normal form
(cf. Proposition 2.1.5). Clearly, this holds for propositional formulas.
For the existential quantifier, use that projections of analytic sets are
analytic (see e.g. Bogachev [4, Corollary 1.10.9]), and for the universal
quantifier, this fact is exactly expressed by the Kondo-Tugue theorem
(see e.g. Kechris [9, Theorem 29.26]).

In particular, we see that every definable set of dimension 1 is ana-
lytic. But then it is measurable in the completion D of D0 (see e.g.
Bogachev [4, Theorem 1.10.5]).

Proposition 5.2.2. Let L be a countable first-order language not con-
taining equality or function symbols. Let T be an ε-satisfiable set of
sentences. Then there exists an ε-model (M ,D) on 2ω which ε-satisfies
T such that D is the completion of a Borel measure. Furthermore, all
relations are Borel.

Proof. Fix a model ε-satisfying all sentences from T and apply Theorem
5.1.5 (with X = ∅) to find a model (N ,E). Let Γ = {B0, B1, . . . } and
Ea be as in the proof of Theorem 5.1.5, i.e.:

Ea :=
⋂

ai=1

Bi ∩
⋂

ai=0

(X \Bi).

Then, per construction of N , each such Ea contains at most one point
(namely xa). So, the function π : N → 2ω sending each xa ∈ N to a
is injective.

Now, define subsets Cn ⊆ 2ω by

Cn := {a ∈ 2ω | an = 1}.

Then {Cn | n ∈ ω} generate the Borel σ-algebra of 2ω and we have
π−1(Cn) = Bn. Thus, Cn can be seen as an enlargement of Bn.

Next, let R(x1, . . . , xn) be an n-ary relation. Write RN as an ex-
pression using countable unions and intersections of Cartesian products
of E -measurable sets from ΓR (cf. the definition of ΓR in the proof of
Theorem 5.1.5); say as the expression t(B0, B1, . . . ). Then we define
RM by t(C0, C1, . . . ). Furthermore, we define each constant cM to be
π(cN ).

Finally, define a Borel probability measure D0 on 2ω by

D0 := E ◦ π−1.
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Let D be the completion of D0. Then the previous theorem tells us
that (M ,D) is an ε-model. But, since we only enlarged the sets on
which formulas hold, we can now directly verify (using induction over
the structure of a formula ϕ in prenex normal form) that every formula
ϕ ∈ T is ε-satisfied in (M ,D): namely, for universal quantifiers we
observe that the set on which a formula holds can only have larger
measure, and for existential quantifiers we remark that we only have
added more witnesses, not removed any.

The idea of sending each xa to a ∈ 2ω was originally inspired by
the proof of Bogachev [5, Theorem 9.4.7], albeit in a different context.
However, he only discussed the case in which the function π is also
surjective (the non-surjective case is irrelevant in his context).

Next, we show that we can eliminate atoms.

Definition 5.2.3. Let µ be a measure and let A be a µ-measurable
set. We say that A is an atom of the measure µ if µ(A) > 0 and every
measurable subset B ⊆ A has measure either 0 or µ(A).

The measure µ is called atomless if it does not have any atoms.

We remark that a measure has at most countably many inequivalent
atoms, where two atoms A,B are called inequivalent if µ(A4B) > 0.
Namely, if µ(A4B) > 0, then µ(A ∩ B) = 0, and it is easily verified
that there can be at most countably many of such almost-disjoint sets
of positive measure (indeed, there can be at most n almost-disjoint sets
of measure ≥ 1

n ).

Lemma 5.2.4. If µ is a Borel measure on a second countable Hausdorff
space X, then µ is atomless if and only if there are no singletons of
strictly positive measure.

Proof. We follow the proof from Aliprantis and Border [1, Lemma
12.18]. The implication from left to right is trivial. For the con-
verse, assume µ has some atom A. Fix a countable base V0, V1, . . .
for the topology on X. Let I := {i ∈ ω | µ(A ∩ Vi) = 0}. Finally, let
B := A \ (

⋃
i∈I Vi). Then B has positive measure (equal to A). We

claim: B is a singleton.
Since, assume a, b ∈ B are two distinct points. Determine disjoint

open sets Vi, Vj such that a ∈ Vi and b ∈ Vj . Since µ(A ∩ Vi) = 0
implies a 6∈ B, we see that µ(A ∩ Vi) = µ(A). Analogously, we see
µ(A∩ Vj) = µ(A). However, since Vi and Vj are disjoint we then have:

µ(A) ≥ µ(A ∩ Vi) + µ(A ∩ Vj) = 2µ(A),
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a contradiction.

Definition 5.2.5. Let (M ,D) and (N ,E) be two ε-models over the
same language. Then we say that (M ,D) and (N ,E) are ε-elementary
equivalent (notation: (M ,D) ≡ε (N ,E)) if for all sentences ϕ we
have:

(M ,D) |=ε ϕ⇔ (N ,E) |=ε ϕ.

Lemma 5.2.6. Let L be a first-order language not containing equality,
function symbols or constants. Let (M ,D) be an ε-model, such that M
is a second countable Hausdorff space and D is the completion of a
Borel measure D0. Then there exists an atomless model (N ,E) such
that E is the completion of a Borel measure E0 and (N ,E) ≡ε (M ,D).

Proof. We first show how to eliminate a single atom of D0. By Lemma
5.2.4, we may assume it to be a singleton x0; say of measure r. We
define a new measure E0 on the disjoint union of M \ {x0} and [0, r]
by setting, for each D0-measurable B ⊆M and Borel C ⊆ [0, r] (where
we let λ denote the Lebesgue measure, restricted to Borel sets):

E0(B ∪ C) = D0(B \ {x0}) + λ(C).

Then clearly, x0 is no longer an atom (since it now has measure
zero). We show how to define the unary relations on M ∪ [0, r]; the
general case is done in the same way. We let R(x) hold if:

• x ∈M and (M ,D) |=ε R(x), or

• x ∈ [0, r] and (M ,D) |=ε R(x0).

That (N ,E) ≡ε (M ,D) is verified by induction on the structure of
a formula ϕ. We prove the universal case; the other cases are similar.
So, let ϕ = ∀x(ψ(x)). We need to show that

Pr
D

[a ∈M | (M ,D) |=ε ψ(a)] ≥ 1− ε

if and only if

Pr
E

[a ∈ N | (N ,E) |=ε ψ(a)] ≥ 1− ε,

which, using the induction hypothesis, is equivalent to

Pr
E

[a ∈ N | (M ,D) |=ε ψ(a)] ≥ 1− ε.
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We either have

x0 /∈ {a ∈M | (M ,D) |=ε ψ(a)}

and then

Pr
D

[a ∈M | (M ,D) |=ε ψ(a)]

= Pr
D

[{a ∈M | (M ,D) |=ε ψ(a)} \ {x0}]

= Pr
E

[a ∈ N | (M ,D) |=ε ψ(a)],

or x0 is in the set mentioned above and then

Pr
D

[a ∈M | (M ,D) |=ε ψ(a)]

= Pr
D

[{a ∈M | (M ,D) |=ε ψ(a)} \ {x0}] + r

= Pr
D

[{a ∈ N | (M ,D) |=ε ψ(a)} \ {x0}] + λ[0, r]

= Pr
E

[a ∈ N | (M ,D) |=ε ψ(a)].

This is exactly what we needed to show.
Finally, using the remark below Definition 5.2.3 above, we can iter-

ate this construction and eliminate the atoms one by one.

The final definitions we need are the important notions of measure
isomorphism and measure isomorphism mod 0.

Definition 5.2.7. Let (X,A , µ) and (Y,B , ν) be measure spaces. We
will say that (X,A , µ) and (Y,B , ν) are isomorphic if there exists an
isomorphism from X to Y ; that is, a bijection f : X → Y such that
f(A) = B and µ ◦ f−1 = ν.

The measure spaces (X,A , µ) and (Y,B , ν) are called isomorphic
mod 0 if there exist A ∈ A , B ∈ B with µ(A) = ν(B) = 0 such
that the measure spaces restricted to respectively X \A and Y \B are
isomorphic.

The next theorem shows the connection between Borel measures on
2ω and the Lebesgue measure.

Theorem 5.2.8 (Bogachev [5, Theorem 9.2.2]). Let D be an atom-
less Borel probability measure on a complete separable metric space.
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Then it is isomorphic mod 0 to [0, 1] with the Lebesgue measure restric-
ted to Borel sets.

Furthermore, x is in the domain of this isomorphism if and only if
it is in the topological support of D (i.e. every open set containing x
has strictly positive measure).

We will combine this with the following result concerning isomorph-
isms mod 0, showing that in our context it does not hurt to have iso-
morphisms mod 0 instead of true isomorphisms.

Lemma 5.2.9. Let L be a first-order language not containing equality,
function symbols or constants. Let (M ,D) be an ε-model of cardinality
at most 2ω such that D is isomorphic mod 0 to [0, 1] with the Lebesgue
measure. Then there exists an ε-model based on [0, 1] with the Lebesgue
measure which is ε-elementary equivalent to (M ,D).

Proof. Fix sets A,B such that D(A) = λ(B) = 0 and fix an isomorph-
ism f : [0, 1] \B →M \A.

Our idea is to transform f into a surjective mapping g from [0, 1] to
M such that g−1 is measure-preserving (that is, for every D-measurable
set U we have λ(g−1(U)) = D(U)). We will then be able to use g−1 to
define the relations.

To construct such a mapping, let C ⊆
(

1
2 , 1
]

be a copy of the Cantor
set and fix a function α : C →M such that A is contained in the image
of α. We will use α to attain the points not attained by f . Also fix a
point x0 ∈ [0, 1] \B. Now define g : [0, 1]→M by

g(x) :=





f(2x) if x ∈
[
0, 1

2

]
and 2x 6∈ B

f(x0) if x ∈
[
0, 1

2

]
and 2x ∈ B

f(2x− 1) if x ∈
(

1
2 , 1
]
\ C and 2x− 1 6∈ B

f(x0) if x ∈
(

1
2 , 1
]
\ C and 2x− 1 ∈ B

α(x) if x ∈ U.

Then all points in M \ A are attained by g on
[
0, 1

2

]
and all points

in A are attained by g on C, so g is surjective. That g−1 is measure-
preserving can be seen by observing that g−1(U)∩

[
0, 1

2

]
and g−1(U)∩(

1
2 , 1
]

both have Lebesgue-measure exactly 1
2 D(U).

Now define the relations on [0, 1] by letting RN (x1, . . . , xn) hold if
RM (g(x1), . . . , g(xn)) holds. That the relations are measurable can be
directly seen induction over the generation of a relation in the original
model (see Proposition 1.1.10); for the base case we remark that we
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distinguish the various possibilities for g in every variable and thus
get a union of 5n boxes with Lebesgue-measurable edges (where we
use that every subset of C is Lebesgue-measurable). It is then easily
verified that indeed (N ,E) ≡ε (M ,D).

We remark that, if A happens to be a subset of 2ω, we can take α
to be the canonical function mapping C to 2ω. If furthermore A and
B are Borel and f is an isomorphism of the Borel measures, it is easily
seen that if the relations on M were Borel sets, then the relations on
N are also Borel.

Putting together everything we have found, we reach the theorem
announced at the beginning of this section.

Theorem 5.2.10. Let L be a countable first-order language not con-
taining equality, function symbols or constants. Let T be an ε-satisfiable
set of sentences. Then there exists an ε-model on [0, 1] with the Le-
besgue measure which ε-satisfies T . Furthermore, all relations are
Borel.

Proof. This follows from Proposition 5.2.2, Lemma 5.2.6, Theorem
5.2.8 and Lemma 5.2.9.

As remarked above (Remark 5.1.6), this theorem uses the full meas-
urability condition. We expect that we really need this condition, since
otherwise the sections R(a, x2) of a binary relation R(x1, x2) could form
uncountably many different sets, which makes it a problem to show that
the measure is countably generated — which is certainly a necessary
requirement.

5.3 The Löwenheim Number

The next question we ask ourselves is how tight Theorem 5.1.5 is. The
Löwenheim number of a logic is the smallest cardinal λ such that
every satisfiable sentence has a model of cardinality at most λ. For
every ε, we can study the Löwenheim number λε of ε-logic; i.e. the
smallest cardinal such that every ε-satisfiable sentence has an ε-model
of cardinality at most λε. The next theorem tells us what happens if
we assume Martin’s axiom MA (see e.g. Kunen [12]), which is equicon-
sistent with ZFC.

Theorem 5.3.1. Let ε ∈ [0, 1) be rational. For the Löwenheim number
λε of ε-logic we have
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1. ℵ1 ≤ λε ≤ 2ℵ0 ,

2. If Martin’s axiom MA holds then λε = 2ℵ0 .

Proof. The first statement was proven above (in Example 5.1.4 and
Theorem 5.1.5). For the second, assume MA holds. We use a proof
inspired by Keisler [11]. Let ϕ be the sentence from Example 5.1.4.
Let κ < 2ω and assume ϕ has a model of cardinality κ. We remark
that any model of ϕ has to be atomless.

Therefore, if we now use the construction from Proposition 5.2.2, we
find a model (M ,D) which ε-satisfies ϕ and where D is the completion
of an atomless Borel measure. Furthermore, if we let π and (N ,E) be
as in the proof of this proposition, the set π(N ) is a set of cardinality
at most κ, so by MA, see Fremlin [6, p127], it has measure 0. But then

E(N ) = D ◦ π(N ) = 0,

a contradiction.

So, Theorem 5.1.5 is optimal in the sense that we cannot prove that
λε < 2ℵ0 in ZFC. In particular, since MA is consistent with 2ℵ0 > ℵ1

(Kunen, [12, p278]), we cannot prove λε = ℵ1. Furthermore, since
2ℵ0 = ℵ1 is also consistent with ZFC, λε = ℵ1 is independent of ZFC.
This, however, does not eliminate the possibility that we might be able
to prove λε = 2ℵ0 within ZFC.

5.4 Compactness

We start this section with a negative result: we show that compactness
does not hold for our logic, as the next example (taken from Keisler
[11, Example 2.6.5]) shows.

Theorem 5.4.1. For rational ε ∈ (0, 1), compactness does not hold;
i.e. there exists a countable set Γ of formulas such that each finite subset
is ε-satisfiable, but Γ is not ε-satisfiable.

Proof. Let R be a binary relation. Using the reductions from Propos-
ition 4.2.2 (observing, from the proof of that proposition, that we can
apply the reduction per quantifier), we can form a sentence ϕn such
that ϕn is ε-satisfiable if and only if there is a model satisfying:
For almost all y2, there exists a set Ay of measure at least 1− 1

n such that

2For measure 1 many.

5.4 Compactness 51

for all y′ ∈ Ay the sets By := {u | R(u, y)} and By′ = {u | R(u, y′)}
both have measure 1

2 , while By ∩ By′ has measure 1
4 (in other words,

the two sets are independent sets of measure 1
2)3.

Then each ϕn has a finite ε-model, as illustrated below: for each x
(displayed on the horizontal axis) we let R(x, y) hold exactly for those
y (displayed on the vertical axis) where the box has been coloured grey.
If we now take for each Ay exactly those three intervals of length 1

4 in
which y is not, we can directly verify that ϕn holds.

Figure 5.1: A model for ϕ4 on [0, 1].

However, the set {ϕn | n ∈ ω} has no ε-model. Namely, for such
a model, we would have that for almost all y, there exists a set Ay of
measure 1 such that for all y′ ∈ Ay the sets By and By′ (defined above)
are independent sets of measure 1

2 .
Clearly, such a model would need to be atomless and therefore can-

not be countable. But then we would have uncountably many of such
independent sets By. Intuitively, this contradicts the fact that R is
measurable in the product measure and can therefore be formed using
countable unions and countable intersections of Cartesian products.

More formally, the next lemma tells us that for almost all y there
exists a set Cy of strictly positive measure such that for all y′ ∈ Cy
the sets By and By′ agree on a set of measure at least 7

8 ; since we can
check that Ay ∩Cy = ∅ this shows that Ay cannot have measure 1.

Lemma 5.4.2. Let (M ,D) be an ε-model, let R = R(x, y) be a binary
relation and let δ > 0. Then for almost all y there exists a set Cy of
strictly positive measure such that for all y′ ∈ Cy:

Pr
D

[u ∈M | R(u, y)↔ R(u, y′)] ≥ 1− δ.
3That is, PrD [By ∩By′ ] = PrD [By ] · PrD [By′ ].
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Proof. Clearly, it is enough if we show this not for almost all y, but
instead show that for all δ′ > 0 this holds for at least D-measure 1− δ′
many y.

We first remark that the set RM can be approximated using finite
unions of rectangles U × V of D-measurable sets; i.e. there exist D-
measurable sets Ui, Vi such that:

Pr
D

[
RM4(

n⋃

i=1

Ui × Vi)
]
< δδ′.

This fact can be easily checked by observing that it holds for rect-
angles ϕ = U × V and that it is preserved under countable unions and
complements (it is usually part of a proof of Fubini’s theorem).

Now the Vi induce a partition of M into at most 2n many disjoint
parts Yj (by choosing for each i ≤ n either Vi or its complement, and
intersecting these) . But each such Yj has either measure zero (so we
can ignore it), or Yj has strictly positive measure and for all y ∈ Yj we
can take Cy := Yj . One can then verify that for all y′ ∈ Cy and all
u ∈M we have (u, y) ∈ ⋃ni=1 Ui×Vi if and only if (u, y′) ∈ ⋃ni=1 Ui×Vi.
The requested statement about RM then easily follows from how we
approximated RM .

Next, we will present an ultraproduct-construction that allows us
to partially recover compactness, which is due to Hoover and described
in Keisler [11]. This construction uses the Loeb measure from non-
standard analysis, which is due to Loeb [14]. The same construction as
in Keisler is also described in [2] (for a different logic); however, there
the Loeb measure is not explicitly mentioned and the only appearance
of non-standard analysis is in taking the standard part of some ele-
ment. Below we will describe the construction without resorting to
non-standard analysis. To be able to define the measure, we need the
notion of a limit over an ultrafilter.

Definition 5.4.3. Let U be an ultrafilter over ω and let a0, a1, · · · ∈ R.
Then a limit of the sequence a0, a1, . . . over the ultrafilter U is an r ∈ R
such that for all ε > 0 we have {i ∈ ω | |ai − r| < ε} ∈ U. We will
denote such a limit by limU ai.

Proposition 5.4.4. Limits over ultrafilters are unique. Furthermore,
if a0, a1, . . . is a bounded sequence, then for every ultrafilter U the limit
over U exists.
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Proof. First assume we have an ultrafilter U over ω and a sequence
a0, a1, · · · ∈ R which has two distinct limits r0 and r1. Then the sets

{i ∈ ω | |ai − r0| < |r0 − r1|}

and
{i ∈ ω | |ai − r1| < |r0 − r1|}

are disjoint elements of U; so, ∅ ∈ U, which contradicts U being a
proper filter.

Now, assume the sequence a0, a1, . . . is bounded; without loss of
generality we may assume that it is a sequence in [0, 1]. We will in-
ductively define a decreasing chain [bn, cn] of intervals such that for all
n ∈ ω we have {i ∈ ω | ai ∈ [bn, cn]} ∈ U.

First we let [a0, b0] = [0, 1]. Next, if {i ∈ ω | ai ∈ [bn, cn]} ∈ U,
then either {

i ∈ ω | ai ∈
[
bn,

bn + cn
2

]}
∈ U

or {
i ∈ ω | ai ∈

[
bn + cn

2
, cn

]}
∈ U.

Choose one of these two intervals to be [bn+1, cn+1].
Now there exists a unique point r ∈ ⋂n∈ω[bn, cn]; it is easily verified

that this is the limit of the sequence.

Using these limits over ultrafilters, we show how to define a prob-
ability measure on an ultraproduct of probability measures.

Definition 5.4.5. Let U be an ultrafilter on ω and let (Ai,Di) be a
sequence of measure spaces over sets Xi. For each sequence A0, A1, . . .
with Ai ∈ Ai we will call the set

[Ai] :=

{
[a0, a1, . . . ] ∈

∏

i∈ω
Xi/U | {i ∈ ω | ai ∈ Ai} ∈ U

}

a basic measurable set. If we let Γ be the collection of all basic
measurable sets, then we define the ultraproduct measure to be the
unique measure E on σ(Γ) such that for all basic measurable sets:

Pr
E

([Ai]) = lim
U

Pr
Di

(Ai).

Proposition 5.4.6. The ultraproduct measure exists and is well-defined.
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Proof. We need to verify that E as defined on the set Γ of basic measur-
able sets is a pre-measure, so that we can apply Carathéodory’s exten-
sion theorem (Theorem 1.1.7). We will show that for any decreasing
sequence [A0

i ] ⊇ [A1
i ] ⊇ . . . such that

⋂
j∈ω[Aji ] = ∅ we have that

limj→∞ PrE ([Aji ]) = 0, which is equivalent to E being a pre-measure.
So, assume this limit is not 0. By taking a subsequence we may

assume that there exists an ε > 0 such that for all j ∈ ω we have

Pr
E

([Aji ]) ≥ ε

or equivalently
{i ∈ ω | Pr

Di

(Aji ) ≥ ε} ∈ U.

Let I := {i ∈ ω | PrDi
(A0

i ) ≥ ε}. Now observe that for all j ∈ ω we
have

{i ∈ ω | Aji ⊇ Aj+1
i } ∈ U.

But then, we also have for all j ∈ ω that

Sj := {i ∈ ω | A0
i ⊇ Aji} ∩ {i ∈ ω | Pr

Di

(Aji ) ≥ ε} ∈ U.

Now define sets Bji by

Bji :=





A0
i if j = 0

Aji if j > 0 and i ∈ Sj
Aki if j > 0, i 6∈ Sj and k = µn[i ∈ Sn].

Then we have for all i, j ∈ ω that Bji ⊇ Bj+1
i and for all i ∈ I,

j ∈ ω that PrDi
(Bji ) ≥ ε. Furthermore, we can verify that for all

j ∈ ω we have that [Bji ] = [Aji ]; therefore we have in particular that⋂
j∈ω[Bji ] = ∅. Since I ∈ U, we now see that there must exist an i ∈ I

such that
⋂
j∈ω B

j
i = ∅, which contradicts PrDi

(Bji ) ≥ ε.
We can now define a model on the ultraproduct in the usual way;

however, we cannot guarantee that this is an ε-model, since we merely
know that all definable subsets of M of arity 1 are measurable (cf.
Section 2.1, remark 7). This is made precise in the next definition.

Definition 5.4.7. If M is a first-order model and D is a probability
measure on M such that for all formulas ϕ = ϕ(x1, . . . , xn) and all
a1, . . . , an−1 ∈M , the set

{an ∈M | (M ,D) |=ε ϕ(a1, . . . , an)}
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is D-measurable, we say that (M ,D) is a weak ε-model.

Clearly, all ε-models are also weak ε-models. However, because we
do not require relations and functions to be measurable, the converse
need not hold.

We now proceed with the definition of the model-structure on the
ultraproduct.

Definition 5.4.8. Let ε ∈ [0, 1], let U be an ultrafilter over ω and
let (M0,D0), (M1,D1), . . . be a sequence of weak ε-models. We then
define the ultraproduct of this sequence, which we will denote by∏
i∈ω(Mi,Di)/U, to be the classical ultraproduct of the models Mi,

equipped with the ultraproduct measure.
More precisely, we define it to be the model having as universe∏

i∈ω Mi/U, where for each relation R(x1, . . . , xn) we define the rela-
tion on

∏
i∈ω(Mi,Di)/U by

R([a1
i ], . . . , [a

n
i ])⇔ {i ∈ ω | (Mi,Di) |= R(a1

i , . . . , a
n
i )} ∈ U,

and we define function symbols f(x1, . . . , xn) by

f([a1
i ], . . . , [a

n
i ]) := [f(a1

0, . . . , a
n
0 ), f(a1

1, . . . , a
n
1 ), . . . ];

in particular for constants c we define

c := [c, c, . . . ].

Finally, we take as measure the ultraproduct measure.

We can now show that the fundamental theorem of ultraproducts,
or  Loś’s theorem, holds for this definition.

Theorem 5.4.9 ( Loś’s theorem for probability logic). For every
formula ϕ(x1, . . . , xn) and every sequence of elements [a1

i ], . . . , [a
n
i ] ∈∏

i∈ω(Mi,Di)/U, the following are equivalent:

1.
∏
i∈ω(Mi,Di)/U |=ε ϕ([a1

i ], . . . , [a
n
i ]),

2. {i ∈ ω | (Mi,Di) |=ε ϕ(a1
i , . . . , a

n
i )} ∈ U.

Proof. We may assume ϕ to be in prenex normal form by Proposition
2.1.5. We now use induction over the structure of ϕ. The only case
that is different from the classical case is the universal case. Thus, let
ϕ = ∀xn+1(ψ(x1, . . . , xn+1).
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By definition,
∏

i∈ω
(Mi,Di)/U |=ε ϕ([a1

i ], . . . , [a
n
i ])

is equivalent to

Pr
E

([an+1
i ] ∈

∏

i∈ω
Mi/U |

∏

i∈ω
(Mi,Di)/U |= ψ([a1

i ], . . . , [a
n+1
i ])) ≥ 1− ε.

By induction hypothesis, we know that this is equivalent to

Pr
E

([an+1
i ] ∈

∏

i∈ω
Mi/U | {i ∈ ω | (Mi,Di) |=ε ψ(a1

i , . . . , a
n+1
i )} ∈ U)

≥ 1− ε. (5.2)

Observe that this set is exactly the basic measurable set

[{an+1
i ∈Mi | (Mi,Di) |=ε ψ(a1

i , . . . , a
n+1
i )}].

So, equation (5.2) can be verified to be equivalent to

{i ∈ ω | Pr
E

(an+1
i ∈Mi | (Mi,Di) |=ε ψ(a1

i , . . . , a
n+1
i )) ≥ 1− ε} ∈ U

which is of course equivalent to

{i ∈ ω | (Mi,Di) |=ε ϕ(a1
i , . . . , a

n
i )} ∈ U.

Corollary 5.4.10. The ultraproduct is a weak ε-model.

Proof. For every formula ϕ = ϕ(x),  Loś’s theorem tells us that the
subset of

∏
i∈ω(Mi,Di)/U defined by ϕ is exactly the basic measurable

set given by the subsets of (Mi,Di) defined by ϕ.

We remark that this construction, in general, does not yield an ε-
model. For example, if we have a binary relation R(x1, x2) and on
each model (Mi,Di) the relation R consists of the union of two ‘boxes’
(Xi×Yi)∪(Ui×Vi), then we would need an uncountable union of boxes
of basic measurable sets to form R in the ultraproduct model. This is,
of course, not an allowed operation on σ-algebras.

A more formal argument showing that the ultraproduct construc-
tion does not necessarily yield ε-models is that this construction allows
us to prove a weak compactness result in the usual way. If this would
always yield an ε-model, this would contradict Theorem 5.4.1 above.
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Theorem 5.4.11 (Weak compactness theorem). Let T be an at
most countable set of sentences such that each finite subset is satisfied
in a weak ε-model. Then there exists a weak ε-model (M ,D) satisfying
T .

Proof. Let A0, A1, . . . be an enumeration of the finite subsets of T . For
each Ai, fix a weak ε-model (Mi,Di) satisfying all formulas from Ai.
Use the ultrafilter theorem to determine an ultrafilter U on ω such that
for all ϕ ∈ T we have

{i ∈ ω | (Mi,Di) |=ε ϕ} ∈ U.

Now form the ultraproduct; by Theorem 5.4.9 we can directly verify
that this ultraproduct satisfies all ϕ ∈ T .
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Future Research

Since the probability logic that we studied has only recently been in-
troduced, there are a lot of open questions remaining and the research
could be taken in many directions. We briefly state some of them.

1. What is the computational complexity of validity and satisfiab-
ility? In Chapter 4 we found lower bounds for the complexity
of these problems. It is very likely that, using the Löwenheim-
Skolem results from Chapter 5 (Theorem 5.1.5 and Theorem
5.2.10), we could find an upper bound of Π2

1 for validity and
∆2

0 for satisfiability (although this would take a lot of effort to
arithmetize the necessary parts of measure theory). We would
like to know the exact complexity of validity and satisfiability.

2. Further development of model theory. So far, we have only looked
at the most elementary model-theoretic theorems. There are
many more theorems which are worth further investigation: for
example, we have not touched on questions of axiomatisability,
elimination of quantifiers or categoricity. Of course, it is also to
be expected that we will find new theorems with no analogue in
classical logic.

3. Decidability of fragments. We have proven that both validity and
satisfiability are undecidable. However, these problems are decid-
able for certain fragments of probability logic. We wish to study
these fragments and show for which ones validity and satisfiability
are decidable, and for which ones they are not.
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Löwenheim-Skolem

downward, 39–43
truth

ε-, 10

ultrafilter, limit over, 52
ultraproduct, 55
ultraproduct measure, 53

Valiant’s Robust Logic, 24–25
valid, ε-, 11

weak ε-model, 55


