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Abstract. For a class C of sets, let us say that a set A is C stabilising if
A 4 X ∈ C for every X ∈ C. We prove that the Martin-Löf stabilising sets are
exactly the K-trivial sets, as are the weakly 2-random stabilising sets. We also
show that the 1-generic stabilising sets are exactly the computable sets.

1. Introduction

Lowness for randomness is a topic that has attracted much attention in the
literature. Recall that a set A is low for Martin-Löf randomness if, whenever X is
Martin-Löf random, X is also Martin-Löf random relative to A. Thus, if A is not
low for Martin-Löf randomness, there is a Martin-Löf random set X such that A
“derandomises” it.

One particular, very simple way in which an oracle A might derandomise a set
X is if the symmetric difference X4A of X with A is not itself random. Here
X4A = (X rA)∪ (ArX); or equivalently, if we identify sets with their indicator
function, symmetric difference is the same as bitwise addition modulo 2. At first
sight, it might seem that this method of derandomising a set is too weak to capture
exactly those A that are not low for Martin-Löf randomness: it is very uniform, and
also very local. Furthermore, it is a priori not even clear that the class of such A
is degree-invariant, or that it is countable. However, at least the locality does not
have to be a problem, since Nies [9] has shown that the (global) property of being
low for Martin-Löf randomness corresponds to the (much more localised) property
of being K-trivial.

Note that 2ω forms an (abelian) group under the operation 4. In particular,
we can view 4 as a group action 2ω × 2ω → 2ω. Recall that, for any group action
G×X → X, the set stabiliser of a subset Y ⊆ X is the set

{g ∈ G | gY = Y }.
In case G is a torsion group (i.e., all elements have finite order), like 2ω, note that

{g ∈ G | gY = Y } = {g ∈ G | gY ⊆ Y }.
Following this terminology, let us therefore make the following definition.

Definition 1.1. Let C ⊆ 2ω. The stabiliser of C is the set
{A ∈ 2ω | ∀X ∈ C(A4X ∈ C)}.
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We will say that such an A is C stabilising.

The question of which sets are Martin-Löf stabilising has circulated in the effective
randomness community (using various terminology). Kjos-Hanssen was probably
the first person to ask it. The first time the question appeared in print seems to
be in Kihara and Miyabe [4]. They study the stabiliser of various notions from
randomness and genericity, mainly for its connection to the cardinal characteristic
of null-additivity.

Kihara and Miyabe gave characterisations of the C stabiliser for several classes C.
Recall that, for a randomness notion R, a set A is uniformly low for R-randomness if
every R-random set X passes T A for all T such that T B is an R-test for every oracle
B (Miyabe [7] and Miyabe and Rute [8]). Recall that, for Martin-Löf randomness
and 1-genericity, uniform lowness and lowness coincide. On the other hand, for
many other notions this is not the case. Furthermore, as noted above, the map
X 7→ A4X is uniform in A, and therefore one would expect that a connection
between R stabilising and lowness for R-randomness would, if it exists at all, refer
to uniform lowness instead of non-uniform lowness.

It turns out such a connection often exists. In [4], it is shown that the Kurtz
stabilising sets are exactly the sets that are uniformly low for Kurtz randomness,
and that the weakly 1-generic stabilising sets are those that are uniformly low for
weak 1-genericity. Furthermore, if we generalise the notion of C stabilising to the
notion of (C,D) stabilising, where A is (C,D) stabilising if for every X ∈ C we
have that A4X ∈ D, then they have shown that (Martin-Löf, Schnorr) stabilising
coincides with uniformly (Martin-Löf, Schnorr) low, and that (Martin-Löf, Kurtz)
stabilising coincides with uniformly (Martin-Löf, Kurtz) low. Here, recall that A is
(C,D) low if every C-random is D-random relative to A, and it is straightforward to
formulate the uniform version of this.

We add several results to this list. We show that the Martin-Löf stabilising sets
are those that are low for Martin-Löf randomness (i.e., the K-trivial sets), and
that the 1-generic stabilising sets are exactly the sets that are low for 1-generic
(i.e., computable, by Greenberg, Miller and Yu, as published in Yu [11]). We also
show that the weakly 2-random stabilising sets are the sets that are low for weak
2-randomness, and that the sets that are (weakly 2-random, Martin-Löf) stabilising
are those that are (weakly 2-random, Martin-Löf) low. Note that in these last two
lowness classes also coincide with the K-trivial sets.

As noted above, these new characterisations of K-triviality are not obviously
degree invariant. This is somewhat unusual. Of the seemingly countless characteri-
sations of K-triviality that have been found, almost all of them say that K-trivial
sets are weak as oracles, or that they are easy to compute (or both), in other words,
properties that are explicitly degree invariant. The most notable exception to this
rule, of course, is K-triviality itself.

The observant reader might have noticed that in all of the cases mentioned above,
C stabilising coincides with being uniformly low for C. Strangely enough, we do not
know of a single meta-result that yields all of these. Instead, all of the proofs proceed
indirectly; they each prove the equivalence of (uniform) lowness and stabilising
by passing through a third characterisation. For example, we will show directly
that Martin-Löf stabilising implies K-triviality, instead of reasoning directly about
lowness for Martin-Löf randomness.
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2. ML-randomness

In this section, we will prove that the sets that are Martin-Löf stabilising are
exactly the K-trivial sets. Before we do so, we need to prove two easy lemmas.

Lemma 2.1. For every universal Martin-Löf test U0, U1, . . . , if A is Martin-Löf
stabilising, then there is a Π0

1-class P of positive measure and an m ∈ ω such that
A4P ⊆ Qm, where Qm is the complement of Um.

Proof. Towards a contradiction, let us assume the lemma is false Let P be a
nonempty Π0

1-class containing only Martin-Löf random sets. We will construct a set
X ∈ P for which A4X is not Martin-Löf random by a finite extension argument.
That is, we will construct σ0 � σ1 � · · · such that (A4(P ∩ JσiK)) ∩Qi = ∅ and
such that P ∩ JσiK 6= ∅; then X =

⋃
s∈ω σs is as desired.

We let σ−1 = ∅. Now, to define σs, since P ∩Jσs−1K is nonempty and only contains
Martin-Löf random sets, it has positive measure. Hence since we assumed the lemmas
is false, there exists a string σ � σs−1 with JσK∩P 6= ∅ and (A4(P ∩ JσK))∩Qs = ∅.
Now let σs = σ for the least such string σ. �

The converse is also true, although we do not need it below.

Lemma 2.2. If there is a Π0
1-class P of positive measure and a Π0

1-class Q con-
taining only Martin-Löf random sets such that A4P ⊆ Q, then A is Martin-Löf
stabilising.

Proof. Let X be Martin-Löf random. By Bievenu et al. [2, Theorem 2], there is
a Y =∗ X such that Y ∈ P . Thus, Y 4A is Martin-Löf random, and hence so is
X4A =∗ Y 4A. �

Theorem 2.3. A set A is Martin-Löf stabilising if and only if A is K-trivial.

Proof. If A is K-trivial, then it is low for Martin-Löf randomness by Nies [9], and
therefore it is Martin-Löf stabilising.

For the converse, let us first fix a universal Martin-Löf test U0 ⊇ U1 ⊇ · · · such
that, for every Σ0

1-class We and for every i ∈ ω, if µ(We) ≤ 2−e−i−2, then We ⊆ Ui.
Let Qi denote the complement of Ui.

Let B be Martin-Löf stabilising. By Lemma 2.1, there are a Π0
1-class P of positive

measure and an m ∈ ω such that B4P ⊆ Qm. Thus, it suffices to show that for
every A with A4P ⊆ Qm we have that A is K-trivial.

We are going to build a Π0
1-class R and a request set L. By the recursion theorem,

we may assume we know an index e for R. Hence, if we construct R in such a way
that µ(R) ≥ 1− 2−e−m−2, then Qm ⊆ R. This is what we will do, and therefore it
suffices to show that for every A with A4P ⊆ R we have that A is K-trivial.

The idea is that we take blocks out of R in a highly independent way, and
therefore, if A is indeed such that A4P ⊆ R, this will force reals out of P , and
these sets will be independent for different A. Then, we use the measure given to us
by P to enumerate requests for the initial segments of A which will ensure that A is
K-trivial.

Construction. First, let f(〈n, k〉) be the computable function recursively defined
by f(−1) = 0 and f(〈n, k〉) = f(〈n, k〉 − 1) + 2n(k + e+m+ 2).

Next, let us define R. Let R0 = 2ω. At stage s, we act for every number n
such that Ks(n) < Ks−1(n). For such an n, let k = Ks(n). Let σ0, . . . , σ2n−1 list
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the strings of length n in lexicographic order. Now remove from Rs the set V〈n,k〉
consisting of all X for which, if X � σi, then X restricted to the half open interval

[f(〈n, k〉 − 1) + (k + e+m+ 2)i, f(〈n, k〉 − 1) + (k + e+m+ 2)(i+ 1))

is 0k+e+m+2.
Finally, let us define L. For all σ of length at most s for which, if we let n = |σ|

and k = Ks(n), there is a string τ � σ of length f(〈n, k〉) such that V〈n,k〉 ⊆ τ 4Ps,
we enumerate a request (k, σ) into L.

Verification. First, let us show that R has measure at least 1− 2−e−m−2. By
our construction, we have that

µ(R) ≥ 1−
∑
n∈ω

∑
τ :U(τ)=n

2−|τ |−e−m−2 ≥ 1− 2−e−m−2Ω ≥ 1− 2−e−m−2,

where Ω is the halting probability of our universal machine U .
Next, let us show that L is a request set, i.e., that

∑
(k,σ)∈L 2−k <∞. If we put

(k, σ) into L, say at stage s, this means we found some τk,σ � σ of length f(〈n, k〉)
such that Vn,k ⊆ τk,σ4Ps. Thus, Ps ⊆ V〈n,k〉4 τk,σ.

We claim that

µ

 ⋂
(k,σ)∈L

V〈n,k〉4 τk,σ

 =
∏

(k,σ)∈L

µ
(
V〈n,k〉4 τk,σ

)
.

Indeed, it is not hard to check that X ∈
⋂

(k,σ)∈L V〈n,k〉4 τk,σ if and only if, for
every (k, σ) ∈ L, if we let n = |σ|, then X satisfies the requirement that, if we let i be
the position of σ4(X � n) in the lexicographic ordering of 2n, then X(j) 6= τk,σ(j)
for some

(1) j ∈ [f(〈n, k〉 − 1) + (k + e+m+ 2)i, f(〈n, k〉 − 1) + (k + e+m+ 2)(i+ 1)).

Thus, if we have distinct (k, σ), (k′, σ′) ∈ L, there are three cases. If |σ| 6= |σ′| or
k 6= k′, then the requirements for (k, σ) and (k′, σ′) clearly act on different levels
of the form (1). Otherwise, we have |σ| = |σ′| and k = k′ but σ 6= σ′. Then for
every X, we have that σ4(X � n) and σ′4(X � n) differ, so their position in the
lexicographic ordering differ and hence their intervals in (1) are again disjoint.

So, we have that

µ(P ) = µ

(⋂
s∈ω

Ps

)
≤

∏
(k,σ)∈L

µ(V〈n,k〉4 τk,σ) =
∏

(k,σ)∈L

(1− 2−k−e−m−2).

In particular,
∏

(k,σ)∈L(1− 2−k−e−m−2) > 0 since P has positive measure. Thus,
we know that

∑
(k,σ)∈L 2−k−e−m−2 < ∞, and hence also

∑
(k,σ)∈L 2−k < ∞ (see

e.g. Knopp [6, Chapter VII, Theorem 4]). This proves that L is a request set, so
by the KC theorem we know that there is a constant c such that K(σ) ≤ k + c for
every (σ, k) ∈ L.

Finally, assume that A4P ⊆ R. Fix n ∈ ω. If we let k = K(n), we let t be the
stage at which we act for 〈n, k〉, and we let τ = A � f(〈n, k〉), then for large enough
stages s we have Ps4 τ ⊆ Rt. Therefore, we enumerate a request (A � n, k) into L
which implies that K(A � n) ≤ K(n) + c. �
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3. Weak 2-randomness

In this section we prove, using a slight modification of the argument given in
the previous section, that the weakly 2-random stabilising sets and the (weakly
2-random, Martin-Löf) stabilising sets are also the K-trivial sets. For this, we show
that the following weakened form of Lemma 2.1 still holds, by a slight modification
of the proof given above.

Lemma 3.1. For every universal Martin-Löf test U0, U1, . . . , if A is (weakly 2-
random, Martin-Löf) stabilising, then there is a Π0

1-class P of positive measure and
an m ∈ ω such that A4P ⊆ Qm, where Qm is the complement of Um.

Proof. Towards a contradiction, let us assume that the lemma is false. Let P−1 be
a nonempty Π0

1-class containing only Martin-Löf random sets. We will construct a
sequence P−1 ⊇ P0 ⊇ · · · of Π0

1-classes of positive measure and a weakly 2-random
set X ∈

⋂
i∈ω Pi for which A4X is not Martin-Löf random. We will approximate X

by a finite initial segments, i.e., X =
⋃
s∈ω σs for σ0 � σ1 � · · · , where in addition

we require that Pi ∩ JσiK 6= ∅. (So strictly speaking, we are forcing with Π0
1-classes.)

At even stages 2s, we let P2s = P2s−1 and we ensure that Jσ2sK ∩ P2s 6= ∅ and
(A4(P2s ∩ Jσ2sK)) ∩Qs = ∅, as in the proof of Lemma 2.1.

At odd stages 2s+ 1, we ensure that X is weakly 2-random. We let σ2s+1 = σ2s.
Let U =

⋃
i∈ω Vi be the Σ0

2-class with index s. If U does not have measure 1, let
P2s+1 = P2s. Otherwise, note that P2s ∩ Jσ2sK has positive measure, since it is a
nonempty Π0

1-class of weakly 1-random sets. Let i be least such that Vi∩P2s∩ Jσ2sK
has positive measure, and let P2s+1 = Vi ∩ P .

Then the even stages ensure that A4X is not Martin-Löf random, while the
odd stages ensure that X is contained in every Σ0

2-set of measure 1, i.e., that X is
weakly 2-random. �

Theorem 3.2. Let A ∈ 2ω. The following are equivalent:
(1) A is weakly 2-random stabilising.
(2) A is (weakly 2-random, Martin-Löf) stabilising.
(3) A is K-trivial.

Proof. That (1) implies (2) is trivial. The proof that (2) implies (3) is exactly the
same as for Theorem 2.3, except that we use Lemma 3.1 instead of Lemma 2.1.
Finally, that (3) implies (1) follows from the fact that the K-trivial sets are low for
weak 2-randomness, as shown independently by Nies [10] and Kjos-Hanssen, Miller
and Solomon [5]. �

4. 1-Genericity

In this section, we prove that the sets that are 1-generic stabilising are exactly the
computable sets. Perhaps surprisingly, this proof uses notions normally associated
with randomness and not with genericity, such as Kolmogorov complexity and
K-triviality. We first show that every 1-generic stabilising set is infinitely often
K-trivial.

Definition 4.1 (Barmpalias and Vlek [1]). A set A is infinitely often K-trivial if
there is a constant c such that K(A � n) ≤ K(n) + c for infinitely many n.

Theorem 4.2 (Barmpalias and Vlek [1]). Every (weakly) 1-generic set is infinitely
often K-trivial.
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Theorem 4.3. If A is 1-generic stabilising, then it is infinitely often K-trivial.

Proof. Muchnik proved that there is a noncomputable c.e. set C that is low for K,
meaning that (∀σ) K(σ) ≤ KC(σ) + O(1). (Note that by Nies [9], low for K is
yet another characterisation of K-triviality.) Since every noncomputable c.e. set
computes a 1-generic set, we know that there is a 1-generic set X ≤T C. Of course,
X must also be low for K.

Now note that for all n ∈ ω we have
K(A � n) ≤ KX(A � n) +O(1) ≤ KX((X4A) � n) +O(1)

≤ K((X4A) � n) +O(1).
So if we apply Theorem 4.2 to X4A, we see that K(A � n) ≤ K(n) + O(1) for
infinitely many n, as desired. �

We now characterise the 1-generic stabilising sets.

Theorem 4.4. A set A is 1-generic stabilising if and only if it is computable.

Proof. First, note that every computable set is clearly 1-generic stabilising.
Conversely, let A be 1-generic stabilising. Towards a contradiction, assume that

A is not computable. By Theorem 4.3, we know that A is infinitely often K-trivial.
We will construct an X such that X is 1-generic but X4A computes ∅′, which

clearly implies that X4A is not 1-generic and hence A is not 1-generic stabilising,
a contradiction. To make X4A compute ∅′, we code ∅′ into X4A while simul-
taneously ensuring that the construction is computable in X4A. We build X by
a finite extension argument, i.e., we construct an increasing sequence of strings
σ0 ≺ σ1 ≺ · · · such that X =

⋃
s∈ω σs. During the construction, we will need to

force the jump, i.e., we will make sure that at stage s + 1, either {e}σs+1(e)↓, or
there is no extension ρ of σs+1 such that {e}ρ(e)↓. We will need to be able to com-
pute from X4A which of the two cases applies in order to make the construction
computable in X4A.

To do this, we use a similar argument to the proof of a variant of Posner and
Robinson’s cupping theorem in Jockusch and Shore [3], where they use that A
is either not c.e. or not co-c.e., except that in our case we use that A is either
not almost c.e. or its complement is not almost c.e. Here, recall that a set A is
almost c.e. if there is a computable approximation (At)t∈ω to A such that for all
n, if At(n) = 1 and At+1(n) = 0, then there is an m < n with At(m) = 0 and
At+1(m) = 1.1 However, in case neither A nor its complement are almost c.e., to
make the construction outlined in the next paragraph work, it turns out that we
cannot fix one of these choices a priori, but we will need to make a choice “on the
fly” while constructing each σs+1. In that case, we will use one extra bit to code
this choice into X4A.

However, even knowing which of the two cases applies is not enough to make
the construction computable if we only have X4A, because it turns out that the
construction also depends on X, which is not automatically recoverable from X4A.
Fortunately, we already know that A is infinitely often K-trivial, so infinitely often
we can code many of the bits of X into just a few bits of X4A, i.e., we can code X
into X4A in a very compact manner. Furthermore, as long as, after such a point
n at which A � n is K-trivial, we have that A � m is uniformly computable from

1Note that almost c.e. sets are often called left-c.e.
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A � n, the complexity cannot go up very much and therefore we can keep coding
A � n compactly. This combined with the ideas in the previous paragraph will yield
the desired result.

Construction. Let σ0 = ∅. To define σs+1, let ns+1 be least such that there
exists a constant c for which both

|σs|+ 2 log(ns+1) + 2 log(m) + 3 + d+ 2c ≤ m
for all m ≥ ns+1,

K(A � ns+1) ≤ 2 log(ns+1) + c,

and
K(k) ≤ 2 log(k) + c

for all k ≥ 1, where d is a constant which will be specified in the verification below.
Note that we can find such an ns+1 because A is infinitely often K-trivial.

For m ≥ ns+1, let ρm be the first string of length m − |σs| − 3 such that
U(ρ′) = A � m for some ρ′ � ρm, if such a string ρm exists. For a ∈ {0, 1}, let
τam ∈ 2m+1 be the string

σs
_(A(|σs|)4∅′(s))_(A(|σs|+ 1)4 a)_((A � [|σs|+ 2,m− 1))4 ρm)_0.

Now, let ms+1 ≥ n be least such that ρms+1 and τams+1
are defined and such that at

least one of the following four cases holds:
(1) ms+1 6∈ A ∧ ∃σ � τ0

ms+1
({s}σ(s)↓)

(2) ms+1 ∈ A ∧ ∀σ � τ0
ms+1

({s}σ(s)↑)

(3) ms+1 ∈ A ∧ ∃σ � τ1
ms+1

({s}σ(s)↓)

(4) ms+1 6∈ A ∧ ∀σ � τ1
ms+1

({s}σ(s)↑).

(We will argue below that ms+1 always exists.) Let i be the first number for which
we find that (i) holds for ms+1. If (i) is (1), let σs+1 be the least such σ � τ0

ms+1
. If

(i) is (2), let σs+1 be τ0
ms+1

. If (i) is (3), let σs+1 be the least such σ � τ1
ms+1

, and
finally, if (i) is (4), let σs+1 be τ1

ms+1
.

Verification. Our first claim is that at every stage s + 1, there is a number
ms+1 as described. Towards a contradiction, assume otherwise. First, assume that
ρm is defined for all m ≥ ns+1; hence, τam is defined for a ∈ {0, 1}. We claim that
both A and its complement are almost c.e. and hence A is computable, which would
be a contradiction. To this end, let At(m) = A(m) for m < ns+1, let At(m) = 1 for
m ≥ n if there exists a string σ � τ0

m[t] of length at most t such that {s}σ(s)↓, and
let At(m) = 0 otherwise. Here, τ0

m[t] is defined as τ0
m above, except we replace all

occurrences of A in its definition by At � m.
Then (At)t∈ω is a computable approximation to A witnessing that A is almost

c.e. First, we can prove that it converges to A by induction on m. If m < ns+1,
then this is clear. If m ≥ ns+1, then since neither case (1) nor case (2) hold, we
know that m ∈ A if and only if ∃σ � τ0

m({s}σ(s)↓). By induction, we know that
At � m = A � m for large enough t, and hence τ0

m[t] = τ0
m for large enough t, since

the definition of τ0
m[t] only depends on At � m. Thus, if m ∈ A, then m ∈ At for

almost all t, and if m 6∈ A, then m 6∈ At for almost all t, as desired.
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Furthermore, if at some stage t + 1 there is an m ∈ At r At+1, let m be the
least such element. Then this can only be because τ1

m[t + 1] 6= τ1
m[t], and hence

At � m 6= At+1 � m. Thus, there is a m′ < m such that At(m′) 6= At+1(m′), and by
minimality of m we therefore have that m′ ∈ At+1 rAt, as desired.

On the other hand, to show that B = ωrA is almost c.e., let Bt(m) = B(m) for
m < ns+1, let Bt(m) = 1 for m ≥ n if there exists a string σ � τ1

m[t] of length at
most t such that {s}σ(s)↓, and let Bt(m) = 0 otherwise. Then (Bt)t∈ω witnesses
that B is almost c.e. by a similar argument as above, using the fact that (3) and (4)
do not hold for any m ≥ n.

Therefore, some ρk is not defined; we let k ≥ ns+1 be least such that ρk is
not defined. Thus, there is no string ρ with U(ρ′) = A � k of length at most
k − |σs| − 3. However, then the argument above still works up to k − 1; that is, the
argument above gives us a single algorithm which, on input A � ns+1 and m, with
ns+1 ≤ m < k, outputs A(m). Therefore, there is a constant d, independent of A,
ns+1 and k, such that

K(A � k) ≤ K(A � ns+1) +K(k) + d.

Then, we have that
K(A � k) ≤ 2 log(ns+1) + 2c+ 2 log(k) + d ≤ k − |σs| − 3,

which is a contradiction. Therefore, there is a number ms+1 as required by the
construction.

Note that X is clearly 1-generic because it is enough to force the jump. We
also claim that the construction is computable in X4A, and therefore ∅′ is clearly
computable from X4A. Indeed, given σs, to determine σs+1, let m′ be the unique
number such that U((X4A) � [|σs|+ 2,m′− 1))↓; then by construction, the output
of this has to be A � ms+1. Also, let a = (X4A)(|σs| + 1), and finally, let
b = (X4A)(ms+1). Then a and b allow us to determine which of the four cases
we took in the construction of σs+1: if a = 0 we took case (1) or (2), and if a = 1
we took case (3) or (4). Furthermore, we took case (1) or (4) if b = 0, and we took
case (2) or (3) if b = 1. It is now not hard to see how to compute σs+1. �

References
[1] G. Barmpalias and C. Vlek, Kolmogorov complexity of initial segments of sequences and

arithmetical definability, Theoretical Computer Science 412 (2011), 5656–5667.
[2] L. Bienvenu, A. Day, M. Hoyrup, I. Mezhirov, and A. Shen, A constructive version of

Birkhoff’s ergodic theorem for Martin-Löf random points., Information and Computation 210
(2012), 21–30.

[3] C. G. Jockusch, Jr. and R. A. Shore, Pseudo-jump operators. II: Transfinite iterations,
hierarchies and minimal covers, The Journal of Symbolic Logic 49 (1984), no. 4, 1205–1236.

[4] T. Kihara and K. Miyabe, Null-additivity in the theory of algorithmic randomness, submitted.
[5] B. Kjos-Hanssen, J. S. Miller, and R. Solomon, Lowness notions, measure and domination,

Journal of the London Mathematical Society. Second Series 85 (2012), no. 3, 869–888.
[6] K. Knopp, Theory and application of infinite series, Dover Publications, 1990.
[7] K. Miyabe, Truth-table Schnorr randomness and truth-table reducible randomness, Mathe-

matical Logic Quarterly 57 (2011), no. 3, 323– 338.
[8] K. Miyabe and J. Rute, Van Lambalgen’s theorem for uniformly relative Schnorr and com-

putable randomness, Proceedings of the 12th Asian Logic Conference (R. Downey, J. Brendle,
R. Goldblatt, and B. Kim, eds.), World Science Publishing, 2013, pp. 251–270.

[9] A. Nies, Lowness properties and randomness, Advances in Mathematics 197 (2005), 274–305.
[10] , Computability and randomness, Oxford University Press, 2008.



NULLIFYING RANDOMNESS AND GENERICITY USING SYMMETRIC DIFFERENCE 9

[11] L. Yu, Lowness for genericity, Archive for Mathematical Logic 45 (2006), no. 2, 233–238.

(Rutger Kuyper) Department of Mathematics, University of Wisconsin–Madison, 480
Lincoln Dr., Madison, WI 53706, USA

E-mail address: mail@rutgerkuyper.com

(Joseph S. Miller) Department of Mathematics, University of Wisconsin–Madison, 480
Lincoln Dr., Madison, WI 53706, USA

E-mail address: jmiller@math.wisc.edu


	1. Introduction
	2. ML-randomness
	3. Weak 2-randomness
	4. 1-Genericity
	References

