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Abstract. We study the principle of positive choice in the Weihrauch degrees.
In particular, we study its behaviour under composition and jumps, and answer

three questions asked by Brattka, Gherardi and Hölzl.

1. Introduction

In this paper we study the computational strength of positive choice for the
spaces X ∈ {2ω, ω × 2ω, ωω}. Here, positive choice is the principle which assigns
to a tree of positive measure the collection of paths through that tree; a different
name for PC2ω is weak weak König’s lemma or WWKL. There are several different
approaches to classifying the relative strength of different principles; for example,
one could study the relative strength over a weak base system such as RCA0, as
is commonly done in reverse mathematics. However, in this paper we study these
principles in the Weihrauch degrees, which imposes several restrictions when we
are comparing two principles Φ and Ψ: for Φ to Weihrauch-reduce to Ψ, which
intuitively means that Φ is ’easier’ than Ψ, we should be able to solve Φ using one
instance of Ψ in a uniform way.

In particular, in the Weihrauch degrees it makes sense to ask whether applying a
principle twice in a row is strictly stronger than only using it once. In fact, given
two principles Φ and Ψ there is a natural degree Φ ?Ψ corresponding to applying Φ
after Ψ, as shown by Brattka and Pauly [6]; we call Φ ?Ψ the compositional product
of Φ and Ψ.

One natural way of strengthening a principle Φ is by weakening the representation
of its input. For example, when talking about positive choice, instead of considering
the principle which takes as input a tree of positive measure and outputs a path
through the tree, we could consider the principle which takes as input a sequence of
trees which converges pointwise to a tree of positive measure; i.e., the input is only
a ∆0

2-representation of the intended tree. This can be done in general, and so, for
every principle Φ there is a principle Φ′, the jump of Φ.

It is now natural to study the interaction of these different operations. For
example, Brattka, Gherardi and Marcone [4] studied the jump of weak König’s
lemma (the principle which assigns to an infinite binary tree the set of paths through
that tree), and showed that

WKL′ ?WKL′ ≡W WKL′′.

Brattka, Gherardi and Hölzl [3] studied various properties of probabilistic choice;
for example, they showed that

PCX ? PCX ≡W PCX .

They concluded their paper with several questions. First of all, they asked:
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Is WWKL′ closed under composition?

Given their result, this would be a natural relativisation ‘one jump up’.
On the other hand, by the result from [4], iterating WKL′ brings us up to WKL′′.

So, another natural question is:

Or is WWKL′ ?WWKL′ ≡W WWKL′′?

We will show that neither of these is the case. In fact, we will show in section 4
that

WWKL′ ?WWKL′ ≡W PC′ω×2ω ,

and relativising a result from Brattka and Pauly [7] we show that

WWKL′ <W PC′ω×2ω <W WWKL′′.

The third question asked in [3] is

Is WWKL′ ≤W PCωω?

We also give a negative answer to this question. In fact, we show in section 5 that
both PCω×2ω ≡sW PCωω and PC′ω×2ω ≡sW PC′ωω , which we combine with the

theorem from [7] that PCω×2ω <W WWKL′.
Finally, in section 6 we study the remaining compositions f ? g for f, g ∈

{WWKL,WWKL′,PCω×2ω ,PC′ω×2ω}. The results are summarised in section 7.
We assume that the reader is familiar with basic notions of computability theory

and algorithmic randomness, and refer to [8, 9] for a good treatment of both subjects.

Our notation is mostly standard. We use f :⊆ X → Y to denote that f is a
partial map, and we use f : X ⇒ Y to denote that f is a multi-valued function.
Whenever we talk about a path through a tree, we mean an infinite path. When
T ∅
′

is a ∆0
2 tree, we denote by T [s] the set of strings σ such that for no string τ ⊆ σ

we have that T ∅
′[s](τ)[s]↓ = 0, i.e., we make sure T [s] is also a tree. We fix once and

for all a computable bijection 〈., .〉 between ω2 and ω. If f : ω → Y is a function,
f [i] is the function defined by f [i](n) = f(〈i, n〉).

2. Weihrauch degrees

In this section we will repeat the necessary definitions and background on
Weihrauch reducibility. The definition of Weihrauch reducibility has gone through
several generalisations, culminating in the current definition of Brattka and Gher-
ardi [2]. This is the definition we give here.

As is known in computability theory, Baire space ωω can be used to represent
many different kind of things, from trees to real numbers. In order to properly
define Weihrauch reducibility, we need to make these representations explicit. We
do this through the notion of a represented space.

Definition 2.1. A representation of a set X is a surjective partial map δ :⊆ ωω → X .
We say that (X , δX ) is a represented space.

Now, we consider multi-valued (partial) functions f :⊆ X ⇒ Y , i.e., partial maps
which send an x ∈ dom(f) to a non-empty subset of Y . Henceforth, we will omit
the word ‘partial’ and talk about multi-valued partial functions just as multi-valued
functions. An easy example of a multi-valued function is the following, which will
be relevant throughout this paper.

Definition 2.2. For n a positive integer, let n−Ran : 2ω ⇒ 2ω be the multi-valued
function which sends X to the set of n-random reals relative to X, i.e., those reals
which are Martin-Löf random relative to X(n−1).
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To any multi-valued function f :⊆ X ⇒ Y we can assign a set of partial functions
from X to Y in a natural way: take the set of choice functions, i.e., the set of
functions F :⊆ X → Y such that dom(F ) = dom(f), and F (x) ∈ f(x) for every
x ∈ dom(f).

Furthermore, given any multi-valued function f :⊆ X ⇒ Y and representations
δX of X and δY of Y, we can represent the function f as a function g :⊆ ωω ⇒ ωω,
although not necessarily uniquely if δY is not injective. For example, looking at
n−Ran, if we let δ2ω be the inclusion of 2ω in ωω, we can ‘pull back’ this function
to ωω by letting g be the function sending x ∈ 2ω to f(x), and being undefined
outside of 2ω.

In what follows, we do not just think of a multi-valued function f :⊆ X ⇒ Y as
a set-theoretic multi-valued function, but we actually think of it as a multi-valued
function f :⊆ (X, δX) ⇒ (Y, δY ) from a represented space to a represented space.
In other words, we are thinking of an explicit representation of the domain and
codomain. However, when the representations are clear and there is no possible
confusion we will often write f :⊆ X ⇒ Y anyway.

Combining these ideas, we are lead to the notion of a realiser.

Definition 2.3. Let f :⊆ (X , δX ) ⇒ (Y, δY) be a multi-valued function. We say
that F :⊆ ωω → ωω is a realiser of f , written as F ` f , if for every z ∈ dom(f ◦ δX )
we have z ∈ dom(F ), and δY(F (z)) ∈ f(δX (z)).

As an example, a realiser of n−Ran is now just a function which assigns to every
X ∈ 2ω an n-random real relative to X.

The notion of Weihrauch reducibility now defines what it means for a multi-valued
function f :⊆ X ⇒ Y to be ‘easier’ than a multi-valued function g :⊆ U ⇒ V , in the
sense that the realisers of g uniformly compute realisers of f . This is made precise
in the definition below.

Definition 2.4. Let f, g be multi-valued functions (on represented spaces). Then
we say that f is Weihrauch reducible to g, written as f ≤W g, if there exist Turing
functionals K :⊆ ωω → ωω and H :⊆ ωω × ωω → ωω such that for every G with
G ` g we have that H(id, G ◦K) ` f .

Furthermore, we say that f is strongly Weihrauch reducible to g, written as
f ≤sW g, if there exist Turing functionals K,H :⊆ ωω → ωω such that for every G
with G ` g we have that H(G ◦K) ` f .

If f ≤W g and K and H are as in the definition above, we say that K and H
witness that f ≤W g.

The difference between regular Weihrauch reducibility and strong Weihrauch
reducibility is that in the first case the post-processor H has access to the original
input, while this is lost in the latter case.

As for other reducibilities in computability theory, this induces a degree structure
in the usual way. That is, we say that f is Weihrauch equivalent to g, or f ≡W g, if
both f ≤W g and g ≤W f . We say that the equivalence class of f under ≡W is the
Weihrauch degree of f . We can introduce strong Weihrauch equivalence ≡sW and
the strong Weihrauch degrees in the same way.

In [4], Brattka, Gherardi and Marcone have introduced a natural operation
related to composition, as mentioned in the introduction. This notion is called the
compositional product.

Definition 2.5. Let f :⊆ X ⇒ Y and g :⊆ Y ⇒ Z. Then g ◦ f :⊆ X ⇒ Z is the
multi-valued function with domain

{x ∈ X | x ∈ dom(f) ∧ f(x) ⊆ dom(g)},
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and for x in the domain of g ◦ f we have

g ◦ f(x) = {z ∈ Z | ∃y ∈ Y(z ∈ g(y) ∧ y ∈ f(x))}.

Definition 2.6. Let f, g be multi-valued functions (on represented spaces). Then

f ? g = max (f0 ◦ g0 | f0 ≤W f and g0 ≤W g) ,

where the maximum is taken over those f0 and g0 where the codomain of g0 and
the domain of f0 coincide.

That the supremum exists and that it is even a maximum was proven in [6].
Let us give an example using randomness to illustrate how to work with these
compositional products and how to formally work with Weihrauch reducibility.

Proposition 2.7.

n−Ran ? n−Ran ≡W n−Ran.

Proof. It is not hard to see that f ≤W f ? f always holds: consider the composition
of f and the identity.

Conversely, let f0 :⊆ (X, δX) ⇒ (Y, δY ) and g0 :⊆ (Z, δZ) ⇒ (X, δX) with
f0, g0 ≤W n−Ran, and let this be witnessed by V0 and U0 for f0, and by K0 and
H0 for g0. We now define K to be the identity, and we let H be the function
sending (x, y ⊕ z) ∈ ωω × ωω to U0(H0(x, y), z). We claim: K and H witness that
f0 ◦ g0 ≤W n−Ran.

Thus, let G ` n−Ran; we need to show that H(id, G ◦ K) ` f0 ◦ g0. So, let
x ∈ ωω be in the domain of f0 ◦ g0 ◦ δZ . Then

H(x,G(K(x))) = U0(H0(x,G0(x)), G1(x)),

where G(x) = G0(x) ⊕ G1(x). Note that G0(x) is n-random relative to x, hence
it is also n-random relative to K0(x). Thus, per choice of K0 and H0 we see that
δX(H0(x,G0(x))) ∈ g0(δZ(x)). Next, by van Lambalgen’s theorem for n-randomness
(see e.g. [8, Corollary 6.9.3]) we know that G1(x) is n-random relative to x⊕G0(x),
so it is also n-random relative to V0(H0(x,G0(x))). Therefore

δY (U0(H0(x,G0(x)), G1(x))) ∈ f0(δX(H0(x,G0(x)))) ⊆ (f0 ◦ g0)(δZ(x)),

as desired. �

3. Probabilistic choice

In Brattka, Gherardi and Hölzl [3], various choice principles are studied within
the Weihrauch degrees. The main focus of this paper will be probabilistic choice, for
which we will recall the definition shortly. While in [3] various spaces are studied,
we will only study Cantor space 2ω, Baire space ωω and the intermediate space
ω × 2ω, which allows us to simplify the necessary definitions.

Definition 3.1. We let Tree2ω be the set of trees in 2<ω, we let Treeωω be the set
of trees in ω<ω and we let Treeω×2ω be the set of trees in {∅} ∪ (ω × 2<ω), where a
tree in Y is a subset of Y closed under taking substrings. For any tree T , we let [T ]
be the set of infinite paths through T .

In what follows, we will assume reasonable fixed representations of Tree2ω , Treeωω

and Treeω×2ω , where ‘reasonable’ means that membership of a string σ in a tree
δ(X) should be uniformly decidable in X.

There are natural Borel measures on the three spaces mentioned above: on Cantor
space, we have the measure µ2ω induced by

µ2ω (JσK) = 2−|σ|
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(where JσK is the set of x ∈ 2ω extending σ). This corresponds to the probability
measure where each bit has value 0 or 1, each with probability 1/2, independently
of other bits. On Baire space we have the measure µωω induced by

µωω (JσK) =
∏
i<|σ|

2−σ(i)−1,

that is, each value of the sequence is equal to n with probability 2−n−1, independently
of all other values. On ω × 2ω we have the measure induced by

µω×2ω (JσK) = 2−σ(0)−12−|σ|+1,

that is, the first value equal to n with probability 2−n−1 and every other value is 0
or 1 with probability 1/2, all values being independent.

Given any tree, we define the ‘measure of T ’ to be the measure of [T ]. Clearly,
every tree of positive measure has an infinite path. Probabilistic choice is the
multi-valued function assigning to such a tree of positive measure the collection of
its paths.

Definition 3.2. Given X ∈ {2ω, ωω, ω × 2ω}, we let Tree>0
X ⊆ TreeX be the set of

trees of positive measure.

Definition 3.3. Given X ∈ {2ω, ωω, ω × 2ω}, we let PCX : Tree>0
X ⇒ X be the

multi-valued function sending a tree T of positive measure to [T ]. Alternatively, we
call PC2ω weak weak König’s lemma, or WWKL.

As a warmup, let us compare randomness and PC.

Proposition 3.4. We have 1−Ran ≤sW PC2ω but PC2ω 6≤W 1−Ran.

Proof. Fix a universal oracle Martin-Löf test UX0 ,UX1 , . . . and let TX be a tree
uniformly computable in X such that [TX ] is the complement of UX0 . Now let K be
the total Turing functional sending X to TX , and let H be the identity. Then K
and H witness that 1−Ran ≤sW PC2ω .

For the converse, see Brattka, Hendtlass and Kreuzer [5]. �

As informally explained in the introduction, there is a notion of a jump in the
Weihrauch degrees, introduced in Brattka, Gherardi and Marcone [4].

Definition 3.5. Given any multi-valued function f :⊆ (X, δX) ⇒ (Y, δY ), we obtain
its jump f ′ by replacing the representation δX by δ′X = δX ◦ lim, where lim :⊆
ωω → ωω is the partial function sending f to the pointwise limit of f [0], f [1], . . . ,
where the domain of lim is exactly the set of f for which this limit exists.

In other words, as a set-theoretic function f ′ is the same as f , but its input
representation is weakened by only giving a sequence converging to some z, instead
of the actual intended input z. In the case of PC, this leads to the following.

Definition 3.6. Let X ∈ {2ω, ωω, ω × 2ω}. We let limtree>0
X be the collection of

sequences (Ti)i∈ω with Ti ∈ TreeX such that (Ti)i∈ω converges pointwise to a tree
T∞ of positive measure.

Again, we have a natural representation of limtree>0
X by sending f ∈ ωω to(

δTreeX (f [i])
)
i∈ω.

Proposition 3.7. Let X ∈ {2ω, ωω, ω × 2ω}. Given any multi-valued function
f :⊆ Tree>0

X ⇒ Y , let φ(f) :⊆ limtree>0
X ⇒ Y be the multi-valued function sending

(Ti)i∈ω to f(T∞). Then φ is a bijection between {f | f :⊆ Tree>0
X ⇒ Y } and

{g | g :⊆ limtree>0
X ⇒ Y }. Furthermore, f ′ and φ(f) have exactly the same

realisers.
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Proof. The inverse of φ is the function sending g :⊆ limtree>0
X ⇒ Y to the multi-

valued function sending a tree T to g((T )i∈ω), where (T )i∈ω is the sequence that
is constantly T . That f ′ and φ(f) have the same realisers follows directly from
unfolding the definitions. �

Thus, in particular we can identify PC′X with the multi-valued function sending
an element (Ti)i∈ω ∈ limtree>0

X to [T∞], which we will henceforth do.

4. Iterating PC′X

In this section we study what happens when we iterate PC′X , i.e., we look at
PC′X ? PC′X . As mentioned in the introduction, we will show that WWKL′ ?
WWKL′ ≡W PC′ω×2ω . However, we will first show that PC′ω×2ω is closed under

iteration. For this, we relate PC′ω×2ω to 2-randomness. In what follows, we assume

a fixed universal oracle Martin-Löf test UX0 ,UX1 , . . . .

Definition 4.1. Let X be n-random relative to Y . Then the n-randomness defi-

ciency of X relative to Y is the least m ∈ ω such that X 6∈ UY (n−1)

m .

Definition 4.2. Let WWKL′6=0ω be the multi-valued function sending (Ti)i∈ω ∈
limtree>0

2ω to a non-zero element of [T∞].
Similarly, let WWKL′2−Ran be the multi-valued function sending (Ti)i∈ω ∈

limtree>0
2ω to an X ∈ [T∞] which is 2-random relative to (Ti)i∈ω.

Finally, let WWKL′2−Ran+Def be the multi-valued function sending (Ti)i∈ω ∈
limtree>0

2ω to an X ∈ [T∞] which is 2-random relative to (Ti)i∈ω and an upper bound
on its 2-randomness deficiency relative to (Ti)i∈ω.

Theorem 4.3.

PC′ω×2ω ≡sW WWKL′6=0ω ≡sW WWKL′2−Ran ≡sW WWKL′2−Ran+Def .

Proof. First, we show that PC′ω×2ω ≤sW WWKL′6=0ω . Let (Ti)i∈ω ∈ limtree>0
ω×2ω .

Now let (Si)i∈ω ∈ limtree>0
2ω be the sequence of trees where

Si = {∅, 0, 00, . . . } ∪
⋃
n∈ω

0n1Tni ,

where Tni = {σ ∈ 2<ω | nσ ∈ Ti}. Then

[S∞] = {0ω} ∪
⋃
n∈ω

0n1[Tn∞],

so the measure of S∞ is the same as the measure of T∞; in particular we see
that indeed (Si)i∈ω ∈ limtree>0

2ω . Furthermore, every X ∈ [S∞] different from 0ω

computes an element of [T∞] by sending 0n1Y to nY .

Next, it is clear that every 2-random is different from 0ω, which shows that
WWKL′6=0ω ≤sW WWKL′2−Ran. We also get WWKL′2−Ran ≤sW WWKL′2−Ran+Def

by just forgetting the bound on the randomness deficiency.

Finally, we show that WWKL′2−Ran+Def ≤sW PC′ω×2ω . Given any (Ti)i∈ω ∈
limtree>0

2ω , we can uniformly compute trees Pni ∈ Tree>0
2ω such that (Pni )i∈ω converges

to a tree Pn∞ with [Pn∞] = 2ω \ U (Ti)
′
i∈ω

n . Now, consider the sequence of trees (Si)i∈ω
with Si given by:

Si =
⋃
n∈ω

n(Pni ∩ Ti).

Then (Si)i∈ω is uniformly computable in (Ti)i∈ω. Let n ∈ ω and q > 0 be such
that µ2ω(T∞) ≥ 2−n + q, which exists because T∞ has positive measure. Then
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µ2ω(Pn∞ ∩ T∞) ≥ q, so also µω×2ω(S∞) ≥ q > 0. Therefore (Si)i∈ω ∈ limtree>0
ω×2ω .

Finally, for every element of nX ∈ [S∞] we have that X ∈ [T∞], that X is 2-random
relative to (Ti)i∈ω and that n is a bound on its 2-randomness deficiency relative to
(Ti)i∈ω. �

To show that PC′ω×2ω is closed under composition, we use the following lemma
(see [1, Proposition 2.12] for a proof with Y = ∅′, which relativizes in a straightfor-
ward way).

Lemma 4.4. There is a single Turing functional Φ such that for every 2-random
X relative to Y , if n bounds the 2-randomness deficiency of X relative to Y then
Φ(X ⊕ Y ′, n) = (X ⊕ Y )′.

Theorem 4.5. We have

WWKL′2−Ran ?WWKL′2−Ran+Def ≡W PC′ω×2ω ,

and hence also by Theorem 4.3:

PC′ω×2ω ? PC′ω×2ω ≡W PC′ω×2ω .

Proof. The fact that WWKL′2−Ran ? WWKL′2−Ran+Def ≥W PC′ω×2ω is a direct
consequence of Theorem 4.3.

For the converse, let f and g be multi-valued functions such that both f ≤W
WWKL′2−Ran and g ≤W WWKL′2−Ran+Def . Without loss of generality, we can
assume that the domain and range of f and g are contained in ωω. We want to show
that f ◦g ≤W PC′ω×2ω . Unfolding the definition of Weihrauch reducibility, and using
the assumption on f and g, we know that there exist three computable functions
T : ωω → limtree>0

2ω , S :⊆ ωω×2ω×ω → limtree>0
2ω and H :⊆ ωω×2ω×ω×2ω → ωω

such that for every X,Y, n, such that Y ∈ [limT (X)] and Y is 2-random relative
to X with 2-randomness deficiency at most n, we have that (X,Y, n) is in the
domain of S, and for every Z ∈ [limS(X,Y, n)], H(X,Y, n, Z) ∈ (f ◦ g)(X).

The core of the argument is to show that for all X, the set Q(X) of pairs (n, Y ⊕Z)
such that Y ∈ [limT (X)], Y is 2-random relative to X with 2-randomness deficiency
at most n and Z ∈ lim[S(X,Y, n)] is a Π0

1(X ′) subset of ω×2ω, uniformly in X. This
is a consequence of Lemma 4.4. Indeed, given X the sequence T (X) is computable
in X, thus limT (X) is X ′-computable, uniformly in X. Thus, the set of pairs
(Y, n) such that Y is a path of limT (X) and Y is 2-random relative to X with
randomness deficiency at most n is Π0

1(X ′) uniformly in X. Furthermore, the tree
limS(X,Y, n) is (X,Y, n)′-computable uniformly, but because of Lemma 4.4 it is
in fact (X ′, Y, n)-computable uniformly. Thus the set of paths of limS(X,Y, n) is
Π0

1(X ′⊕Y ). Putting all this together, we get that Q(X) is indeed Π0
1(X ′) uniformly

in X.
Furthermore, Q(X) is a subset of ω × 2ω of positive measure: given X, there

is a positive probability that Y chosen at random (w.r.t. the uniform measure) is
in [limT (X)] (because T (X) has positive measure!), a positive probability that an
integer chosen at random bounds the 2-randomness deficiency of Y relative to X,
and conditional to this, a positive probability that Z chosen at random belongs to
[S(X,Y, n)] (which, assuming Y and n are as above, has positive measure).

We have established that Q(X) is a Π0
1(X ′) subset of ω × 2ω uniformly in X,

hence can be represented by an X ′-computable tree over ω × 2<ω, and thus as the
limit of an X-computable sequence of trees over ω × 2<ω. Now we immediately get
the desired result: given X, one can compute a sequence in limtree>0

ω×2ω representing
Q(X), and for any path (n, Y ⊕ Z) of the limit tree (that is, a member of Q(X)),
we get an element of (f ◦ g)(X) by simply computing H(X,Y, n, Z). This shows
f ◦ g ≤W PC′ω×2ω , as wanted. �
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Thus, in particular we see that WWKL′ ? WWKL′ ≤W PC′ω×2ω . Perhaps
surprisingly, the converse is also true, which is expressed by the next theorem.

Theorem 4.6.

WWKL′2−Ran ≡W WWKL′ ?WWKL′.

Proof. We need to show that WWKL′2−Ran ≤W WWKL′ ?WWKL′. Our idea is as

follows. Given a (Ti)i∈ω ∈ limtree>0
2ω , we want to know the measure of T∞, so that

we can intersect it with a large enough set of 2-randoms. Using the first instance
of WWKL′, we will compute an X such that X ′ computes a lower bound on the
measure of T∞. To do this, our construction uses a partition (In)n∈ω of ω, where the
In should be sufficiently large. We build our first tree to which we apply WWKL′ in
such a way that X � In is constantly 0 for X on this tree if and only if the measure
of T∞ � n (i.e., the measure of {x ∈ 2ω | x � n ∈ T∞}) drops significantly lower than
the measure of T∞ � (n− 1). If we define ‘significantly’ in the right way, this will
only happen finitely often; hence if our intervals In are large enough we do not lose
too much measure by adding this restriction. Furthermore, X ′ can compute how
often X � In is constantly 0, and hence compute a lower bound on the measure of
T∞.

We now give the details. Let (Ti)i∈ω ∈ limtree>0
2ω . Define a partition of ω by

In = [n(n + 1), (n + 1)(n + 2)); hence each In has 2(n + 1) elements. We define
(Si)i∈ω ∈ limtree>0

2ω as follows. Each Si will be of the form S0
i S

1
i . . . , where each

Sni ⊆ {0, 1}2(n+1). In other words, a string σ is in Si if and only if for each n ∈ ω
we have σ � In ∈ Sni .

We show how to define Sni by recursion on n. Simultaneously, we will define an
auxiliary ki,n ∈ ω, where we initialise ki,−1 = 0. Fix i, n ∈ ω. We consider two
cases:

• µ(Ti � n) < 2−ki,n−1 . Then we let Sni = {02(n+1)}. Let ki,n be least such
that µ(Ti � n) ≥ 2−ki,n if µ(Ti � n) > 0; otherwise let ki,n = 0.

• µ(Ti � n) ≥ 2−ki,n−1 . Then we let Sni = {0, 1}2(n+1) \ {02(n+1)}. Let
ki,n = ki,n−1.

Then for every n ∈ ω we have that (Sni )i∈ω converges to some tree Sn∞, because
if s is large enough such that Ti has settled below n for i ≥ s, then Sni = Snj for
all i, j ≥ s. For the same reason, (ki,n)i∈ω converges to some kn. Since T∞ has
positive measure, note that every kn is positive. In fact, (kn)n∈ω converges to the
least k ∈ ω with µ([T∞]) ≥ 2−k.

We also claim that S∞ has positive measure. Let m be large enough such that
kn = km for all n ≥ m. Then Sn∞ = {0, 1}2(n+1) \ {02(n+1)} for n ≥ m. Fix any
string σ ∈ S0

∞S
1
∞ . . . Sm−1

∞ . Then

µ(S | σ) ≤
∑
n≥m

2−2(n+1) < 1,

hence

µ(S) ≥ 2−m(m+1)µ(S | σ) > 0.

Now, given any X ∈ [S∞], note that the number of n such that X � In = 02(n+1)

is exactly k. Thus, there is a Turing functional Φ, independent of (Ti)i∈ω, such that
for every X ∈ [S∞] we have that Φ(X, i) converges to k as i goes to infinity.

Next, we define (Pi)i∈ω ∈ limtree>0
2ω uniformly in X and (Ti)i∈ω. Let Pi =

Ti ∩ U∅
′[i]

Φ(X,i)+1. Then (Pi)i∈ω converges to T∞ ∩ U∅
′

k+1 which has positive measure

and only has 2-random paths, as desired. �



PARALLEL AND SERIAL JUMPS OF WEAK WEAK KÖNIG’S LEMMA 9

It is known from Brattka and Pauly [7, Proposition 22] that PCω×2ω >W WWKL.
Relativising this result we also get that PC′ω×2ω >W WWKL′, and hence WWKL′ ?

WWKL′ >W WWKL′.

Proposition 4.7. We have WWKL′ ≤sW PC′ω×2ω , but PC′ω×2ω 6≤W WWKL′.

Proof. Clearly, WWKL′ ≤W PC′ω×2ω . For the converse, consider the multi-valued
function Cω which assigns to a non-surjective function f ∈ ωω an element not
in the range of f ; in other words, the computable instances represent finding an
element of a non-empty co-c.e. set.1 Then C′ω ≤sW PC′ω×2ω : given (fi)i∈ω, consider

(Ti)i∈ω ∈ limtree>0
ω×2ω given by

Ti =
⋃
j∈ω

⋃
n 6∈fi({0,...,j})

n2<j .

Then Ti is uniformly computable in (Ti)i∈ω, and it converges to

T∞ =
⋃
j∈ω

⋃
n 6∈f∞({0,...,j})

n2<j .

Furthermore, T∞ has positive measure because f∞ is not surjective. Thus, (Ti)i∈ω
is indeed an element of limtree>0

ω×2ω . Finally, every element X of [T∞] computes an
element not in the range of f , namely X(0).

However, C′ω 6≤W WWKL′ (as pointed out by the referee, this also follows
from [4, Corollary 12.3]; but we give a direct proof). Indeed, assume there are
K :⊆ ωω → limtree>0

2ω and H :⊆ ωω × 2ω → ω such that for every f with (f [i])i∈ω
converging to some f∞ with ran(f∞) 6= ω we have that K(f) is total, and for every
X on K(f)∞ we have H(f,X) 6∈ ran(f∞). Given such an f the complement of its
range is a non-empty set A which is co-c.e. in ∅′, and for every non-empty set A
which is co-c.e. in ∅′ we can effectively find an index for such a function f from an
index for A, so we we will implicitly identify these two. We will therefore build a
set A which is co-c.e. in ∅′ for which H(f,X) 6∈ A for any X ∈ K(f)∞.

By the recursion theorem we may assume we know an index e for f . So, using ∅′
and e we can compute K({e})∞. Now look for the least s such that for every
σ ∈ K({e})∞ of length s we have that H({e}, σ)[s]↓ if such an s exists, and
enumerate the finitely many values H({e}, σ) into the complement of A. If such
an s does not exist, we let A = ω.

Now we know by compactness that an s as above exists, and therefore A is co-finite
(hence non-empty). However, by construction we now have that U({e}, X) 6∈ A for
every X on K({e})∞, which is a contradiction. �

Next, we separate WWKL′2−Ran and hence WWKL′ ? WWKL′ from WWKL′′,
using randomness and the effective 0-1-law. It is known from Brattka and Pauly [7]
that PCω×2ω <W WWKL′. We now show that this also holds one jump higher.

Proposition 4.8. We have WWKL′2−Ran ≤sW WWKL′′, but on the other hand

WWKL′′ 6≤W WWKL′2−Ran.

Proof. Given any (Ti)i∈ω ∈ limtree>0
2ω , we can use (Ti)

′′
i∈ω to compute a lower

bound 2−n on the measure of T∞, and then let S be a tree such that [S] = [T∞] \
U (Ti)

′
i∈ω

n+1 . Since S is (Ti)
′′
i∈ω-computable we can uniformly transform S into a (Ti)i∈ω-

computable double sequence ((Sji )i∈ω)j∈ω with limj→∞ limi→∞ Sji = S. Since every

infinite path of S is a 2-random(Ti)i∈ω path of T∞ and all the computations are
uniform, this shows that PC′ω×2ω ≤sW WWKL′′.

1Our definition is not exactly the same as the definition of Cω in Brattka, Gherardi and Hölzl [3],
but it is easily seen to be strongly Weihrauch-equivalent to it.
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Conversely, assume towards a contradiction that WWKL′′ ≤W WWKL′2−Ran.
Consider any ∅′′-computable tree S of positive measure without ∅′′-computable
paths. Then S is the limit of a computable double sequence ((Sji )i∈ω)j∈ω converging
to S. Therefore, from our assumption that WWKL′′ ≤W WWKL′2−Ran it follows

that there should be a computable (Ti)i∈ω ∈ limtree>0
2ω such that every 2-random

path of T∞ computes a path of S. Let X be a ∅′′-computable 2-random set. Then
the effective 0-1-law tells us that Y = σX is a path of T∞ for some σ ∈ 2<ω. So, Y
is a 2-random path of T∞, but since it is ∅′′-computable it clearly does not compute
a path of S. �

Thus, combining everything from this section we have the following.

Corollary 4.9.

WWKL′ <W WWKL′ ?WWKL′ <W WWKL′′.

5. PCωω

In this section we will show that PCωω ≡sW PCω×2ω . First, let us remark that,
replacing every occurrence of 2-randomness by 1-randomness in Definition 4.2 and
Theorem 4.3, we also get the following result by the same proof as for Theorem 4.3.

Theorem 5.1.

PCω×2ω ≡sW WWKL6=0ω ≡sW WWKL1−Ran ≡sW WWKL1−Ran+Def .

The following result, due to Brattka, Gherardi and Hölzl, was previously an-
nounced by Hölzl at ARA 2014 in Gotemba, but a proof has not yet appeared in
print.

Theorem 5.2.

PCωω ≡sW PCω×2ω .

Proof. Clearly PCω×2ω ≤sW PCωω . We show the converse. Using the previous
theorem, this is equivalent to showing that PCωω ≤sW WWKL1−Ran.

We will use the function α : 2<ω → ω<ω which maps a string σ to the string
enumerating σ in increasing order, i.e., the length of α(σ) is the number of ones
in σ, and α(σ)(n) is the position of the nth one.

First we define a computable function K which maps trees in ωω to trees in 2ω.
Let T be a tree in ωω. Given any string σ ∈ 2<ω, we put σ into K(T ) if and only if
α(σ) ∈ T .

Then K is clearly computable. Furthermore, if X ∈ [K(T )] has infinitely many
ones, then α(X) :=

⋃
n∈ω α(X � n) ∈ ωω is an infinite path of T . In particular this

holds for the random paths of K(T ), thus every random path of K(T ) computes
a path of T . Finally, by the way we have defined our measures we know that α is
measure-preserving, and hence

µ2ω ([K(T )]) ≥ µ2ω

(
α−1([T ])

)
= µωω ([T ]) > 0. �

Note that this proof directly relativises, giving us the following result as well.
Alternatively, this follows from the fact that if f ≤sW g then f ′ ≤sW g′, as proven
in Brattka, Gherardi and Marcone [4].

Corollary 5.3.

PC′ωω ≡sW PC′ω×2ω .
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6. Mixing jumps and iterations

Next, we wonder: what happens if we mix the composition of WWKL and
WWKL′? First, let us show that WWKL ?WWKL′ ≡W WWKL′.

Proposition 6.1.
WWKL ?WWKL′ ≡W WWKL′.

Proof. Let H :⊆ limtree>0
2ω × 2ω → Tree>0

2ω be a Turing functional. We show how
to, given (Ti)i∈ω ∈ limtree>0

2ω such that ((Ti)i∈ω, X) ∈ dom(H) for every X ∈ [T∞],
uniformly construct an (Si)i∈ω ∈ limtree>0

2ω such that every path X of S∞ uniformly
computes a path of both T∞ and H((Ti)i∈ω, X).

For this, we let Si be the tree where a string σ ⊕ τ ∈ Si if and only if σ ∈ Si
and, if H((Ti)i∈ω, σ)[σ](τ)↓, then H((Ti)i∈ω, σ)(τ) = 1. Then it is not hard to
verify that (Si)i∈ω converges to some tree S∞. Furthermore, for every X ∈ [T∞]
and Y ∈ [H((Ti)i∈ω, X)] we have that X ⊕ Y ∈ [S∞], and vice versa. Finally, by
Fubini’s theorem, S∞ has positive measure, completing the proof. �

It turns out the converse also holds. In fact, we even have that WWKL′ ?
PCω×2ω ≡W WWKL′.

Theorem 6.2.

WWKL′ ? PCω×2ω ≡W WWKL′ ?WWKL ≡W WWKL′.

Proof. Clearly,

WWKL′ ≤W WWKL′ ?WWKL ≤W WWKL′ ? PCω×2ω .

We need to show that WWKL′ ? PCω×2ω ≤W WWKL′; or, by Theorem 5.1, that
WWKL′ ?WWKL1−Ran+Def ≤W WWKL′. In fact, we show that even

WWKL′ ?WWKL2−Ran+Def ≤W WWKL′,

where WWKL2−Ran+Def is the multi-valued function assigning to a tree T of positive
measure a 2-randomT path through T together with a bound on its 2-randomnessT

deficiency. The proof is a variation on the proof of Theorem 4.5. Let f and g
be multi-valued functions such that f ≤W WWKL′ and g ≤W WWKL2−Ran+Def .
Again, without loss of generality, we assume that the domain and range of f and g
are contained in ωω. We want to show that f ◦ g ≤W WWKL′. This time, we have
three computable functions T : ωω → Tree>0

2ω , S :⊆ ωω × 2ω × ω → limtree>0
2ω and

H :⊆ ωω × 2ω × ω × 2ω → ωω such that for every X,Y, n, such that Y ∈ [T (X)]
and Y is 2-random relative to X with 2-randomness deficiency at most n, we
have that (X,Y, n) is in the domain of S, and for every Z ∈ [limS(X,Y, n)],
H(X,Y, n, Z) ∈ (f ◦ g)(X).

Given X, we can compute, uniformly relative to X ′, an n = n(X) such that
[T (X)] has measure strictly greater than 2−n and thus there is some member of T [X]
of 2-randomness deficiency at most n. Similarly to the proof of Theorem 4.5, the set
Q(X) of sequences Y ⊕ Z such that Y belongs to T (X) and is 2-random relative
to X with 2-randomness deficiency bounded by n(X), and Z ∈ [limS(X,Y, n)] is a
Π0

1(X ′) subset of 2ω, uniformly in X ′ (and has positive measure). Thus one can,
given X, uniformly compute a sequence of trees converging to a tree whose paths are
members of Q(X), and for every such path Y ⊕ Z, one gets a member of (f ◦ g)(X)
by computing H(X,Y, n(X), Z). �

Thus, we have now studied all combinations of WWKL, WWKL′, PCω×2ω and
PC′ω×2ω , except for PCω×2ω ?WWKL′. An earlier draft of this paper contained an
incorrect statement about this principle, which was pointed out by Brattka and
Hölzl. In fact, they pointed out the following could be proven using techniques from
this paper.
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Lemma 6.3. (Brattka and Hölzl [private communication]) Let Fin ⊆ 2ω be the set
of binary sequences with only finitely many ones. Then

IdFin ≤sW WWKL.

Proof. As in the proof of Theorem 4.6, let In = [n(n+ 1), (n+ 1)(n+ 2)). Given any
X ∈ Fin, let T be the tree such that Y ∈ [T ] if and only if, for all n ∈ ω we have
that Y � In = 02(n+1) if and only if X(n) = 1. Then T has positive measure because
X only contains finitely many ones, as in the proof of Theorem 4.6. Furthermore,
any path Y through T clearly computes X, as desired. �

Lemma 6.4. (Brattka and Hölzl [private communication])

C′ω ≤W Cω ?WWKL′.

Proof. From the previous lemma, together with the fact that, if f ≤sW g, then
f ′ ≤sW g′ (Brattka, Gherardi and Marcone [4]), we see that Id′Fin ≤sW WWKL′.
Furthermore, from [4] we also know that Id′ω ≡sW Cω. Thus, it is enough if we show
that C′ω ≤W Id′ω ? Id′Fin.

Now, given any function f converging to a non-surjective function, let X be such
that X(〈i, n,m〉) = 1 if and only if the least element not in the range of f [i] � n+ 1
is different from the least element not in the range of f [i] � n, and this new least
element is equal to m. Then X converges to an element X∞ ∈ Fin, so the function
mapping f to X∞ is reducible to Id′Fin.

Finally, given X∞, let m be the largest element of the finite set {m | ∃n.〈n,m〉 ∈
X∞}. Since this m can be found as the limit of an X∞-computable sequence, we
obtain that C′ω ≤W Cω ?WWKL′, as desired. �

Proposition 6.5. (Brattka and Hölzl [private communication])

PCω×2ω ?WWKL′ ≡W PC′ω×2ω .

Proof. That PCω×2ω ?WWKL′ ≤W PC′ω×2ω follows directly from Theorem 4.5. For
the converse, we use the previous lemma, together with the fact that, if f ≤sW g,
then f ′ ≤sW g′, the fact that PCω×2ω ≡sW Cω ×WWKL (Brattka, Gherardi and
Hölzl [3]2) and the easy fact that WWKL′ ≡sW WWKL′ ×WWKL′. We now have

PCω×2ω ?WWKL′ ≡W (Cω ×WWKL) ?WWKL′

≥W Cω ?WWKL′

≡W (Cω ?WWKL′)×WWKL′

≥W C′ω ×WWKL′

≡W (Cω ×WWKL)′

≡W PC′ω×2ω . �

We would like to finish this paper with an alternative proof of the separation
of WWKL′ ?WWKL′ and WWKL′. The techniques for this proof were originally
developed by the authors to separate WWKL′ ?WWKL′ from WWKL′ before they
knew that WWKL′ ? WWKL′ ≡W PC′ω×2ω . We hope this alternative approach,
avoiding notions from algorithmic randomness, might be useful for other purposes
in the future.

For this result, we will make use of another well-known Weihrauch degree, namely
the degree LPO, which is the degree associated to the function (which we also
denote by LPO for simplicity) sending X ∈ 2ω to 0 if X = 0ω and to 1 otherwise.

The following was proven in [3]

2They do not explicitly state the strong Weihrauch equivalence, but it follows directly from
their proof.
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Proposition 6.6. LPO ≤W PCω×2ω .

(Indeed, given X, one can compute the tree TX - of positive measure - such
that 0σ ∈ TX if and only if X � |σ| = 0|σ| and for n > 0, nσ ∈ TX if and only if
X � n contains a 1. Then, given a path nZ of TX , we have n = 0 if and only if
LPO(X) = 0). This immediately gives us the following corollary.

Corollary 6.7.

LPO ?WWKL′ ≤W WWKL′ ?WWKL′.

However, we show that one cannot do this with just one application of WWKL′.

Theorem 6.8.

LPO ?WWKL′ 6≤W WWKL′.

Proof. Suppose for the sake of contradiction that LPO?WWKL′ ≤W WWKL′. This
means in particular that there exist two computable functions K : limtree>0

2ω × ω →
limtree>0

ω×2ω and H : limtree>0
2ω × 2ω → 2ω × {0, 1} such that for every (Ti)i∈ω ∈

limtree>0
2ω , we have that for every path X of limK((Ti)i∈ω) that H((Ti)i∈ω, X) =

(Z,LPO(Z)) for some path Z of T∞. To get our contradiction, we will make use
of the recursion theorem relative to ∅′ to build a suitable (Ti)i∈ω. What we do is

build a ∅′-c.e. set of strings (elements of 2<ω) W ∅
′

e whose index we know in advance.
Then we get a ∅′-computable tree T by putting σ ∈ T if and only if σ has no prefix
in W ∅

′

e [|σ|]. We thus know a ∅′-index for T , and therefore we also know an index
for a computable sequence (Ti)i∈ω of trees converging to T .

Now, we can ∅′-compute S = limK((Ti)i∈ω) (to make sure this limit exists, we
will need to ensure that T has indeed positive measure, but we will see at the
end of construction that it is indeed the case). Let H0 and H1 be the first and
second projection of H, respectively. By compactness one can, relatively to ∅′,
find a clopen set D such that H1((Ti)i∈ω, X) = 0 for all X ∈ [S0] = [S] ∩D and
H1((Ti)i∈ω, X) = 1 for all X ∈ [S1] = [S] ∩ Dc. It is well-known that the image
of an effectively compact set by a computable function which is total on this set
is itself effectively compact (and an index of the image can be uniformly obtained
from an index of the source). Relativizing this to ∅′, we see that the image of
S1 under X 7→ H0((Ti)i∈ω, X) is a ∅′-effectively compact set. This image cannot
contain 0ω by definition of [S1] (because otherwise H((Ti)i∈ω, X) = (0ω, 1) for some
X ∈ [S], contradicting the assumption on H and the definition of LPO). Therefore,
we can ∅′-effectively wait until we find an l such that the image of [S1] under
X 7→ H0((Ti)i∈ω, X) is disjoint from [0l]. When such an l is found, we enumerate

in W ∅
′

e all strings that are incompatible with 0l1, so as to get [T ] = J0l1K. Now,
for any X ∈ [S], either X ∈ [S0], in which case H((Ti)i∈ω, X) = (Z, 0) for some
Z ∈ [T ], which is not possible because LPO(Z) = 1 for all Z ∈ [T ], or X ∈ [S1], in
which case H((Ti)i∈ω, X) = (Z, 1) where 0l is not a prefix of Z, and again this is
not possible since Z is supposedly in [T ]. Noting that the tree T does have positive
measure as promised, we have obtained a contradiction. �

Alternatively, the proof of the previous Theorem also follows from the fact that
LPO′ ≤W LPO ?WWKL′, using similar arguments as in Proposition 6.5, and the
fact that LPO′ 6≤W WWKL′ from [4].

Corollary 6.9.

WWKL′ <W WWKL′ ?WWKL′.
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↓ ?→ WWKL PCω×2ω WWKL′ PC′ω×2ω

WWKL WWKL PCω×2ω WWKL′ PC′ω×2ω

PCω×2ω ≡sW PCωω PCω×2ω PCω×2ω PC′ω×2ω PC′ω×2ω

WWKL′ WWKL′ WWKL′ PC′ω×2ω PC′ω×2ω

PC′ω×2ω ≡sW PC′ωω PC′ω×2ω PC′ω×2ω PC′ω×2ω PC′ω×2ω

7. Summary

The following table summarises our results.
Between these principles, we have the following relations:

WWKL <W PCω×2ω <W WWKL′ <W PCω×2ω ?WWKL′ <W PC′ω×2ω .

Finally, let us remark that many of the results studied in this paper also hold for
more than one jump, but to avoid cluttering the notation we have not mentioned
these results explicitly.
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