MATH 571: MATHEMATICAL LOGIC HOMEWORK SET 3, DUE AT 8:50 ON FRIDAY, SEPT. 25

BRING YOUR SOLUTIONS TO CLASS, OR SLIDE THEM UNDER THE DOOR OF VAN VLECK 403

- 1. Exercise 1.4.2 from Enderton.
- 2. Let $U = \mathbb{N}$. For each of the following problems, give sets B and \mathcal{F} consisting of exactly one element each such that the set C generated from B by \mathcal{F} is: (a) The set of even numbers.

 - (b) The set of odd numbers.
 - (c) The set of squares, i.e. numbers $n \in \mathbb{N}$ such that $n = m^2$ for some $m \in \mathbb{N}$.
- 3. Define, by recursion on the set of well-formed formulas, the function \overline{h} such that: i. $\overline{h}(A_i) = 0$ for every sentence symbol A_i .
 - ii. $\overline{h}((\varphi \land \psi)) = \max(\overline{h}(\varphi), \overline{h}(\psi)) + 1.$
 - iii. $\overline{h}((\varphi \lor \psi)) = \max(\overline{h}(\varphi), \overline{h}(\psi)) + 1.$
 - iv. $\overline{h}((\varphi \to \psi)) = \max(\overline{h}(\varphi), \overline{h}(\psi)) + 1.$ v. $\overline{h}((\varphi \leftrightarrow \psi)) = \max(\overline{h}(\varphi), \overline{h}(\psi)) + 1.$

vi.
$$h((\neg \varphi)) = h(\varphi) + 1$$
.

The value $\overline{h}(\varphi)$ is called the *depth* of φ . The *height* of a tree is defined as the number of edges on a maximal path between the root and a leaf; that is, the maximum number of steps one can go down from the top node. For example, the height of the following tree is 3:

Show that the depth of a formula is equal to the height of its ancestral tree.

4. Let $\alpha : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a bijection (it is known that such bijections exist, you do not need to prove this). Let $U = \mathbb{N}$, let

$$B = \{ \alpha(0, n) \mid n \in \mathbb{N} \},\$$

and let

 $\mathcal{F} = \{f\},\$

where

$$f(n,m) = \alpha(1,\alpha(n,m))$$

Let C be the set generated from B by \mathcal{F} .

BRING YOUR SOLUTIONS TO CLASS, OR SLIDE THEM UNDER THE DOOR OF VAN VLECK 403

- (a) Show that C is freely generated from B by \mathcal{F} .
- (b) Let V be the set of all nonempty finite sequences of natural numbers. There is a natural operation on the set of finite sequences called *concatenation*, denoted by u^v: the concatenation of two finite sequences u and v is the finite sequence obtained by putting the elements from the sequence v after the elements of the sequence u. For example, the concatenation of the sequences (5, 17, 21) and (1, 3) is (5, 17, 21, 1, 3).

Show that there is a surjection β from C onto V such that $\beta(f(n,m)) = \beta(n)^{\frown}\beta(m)$.