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1 Introduction
The Medvedev lattice was introduced in [5] as an attempt to make precise the
idea, due to Kolmogorov, of identifying true propositional formulas with iden-
tically "solvable" problems. A mass problem is any set of functions (through-
out this paper "function" means total function from w to w; the small Latin
letters f, g, h.... will be used as variables for functions). Mass problems cor-
respond to informal problems in the following sense: given any "informal
problem", a mass problem corresponding to it is a set of functions which
"solve" the problem, and at least one such function can be "obtained" by any
"solution" to the problem (see [10]).

Example 1.1 If A, B C_ w are sets, and 0 is a partial function, then the
following are mass problems:

1. {CA} ( where CA is the characteristic function of A): this is called the
problem of solvability of A; this mass problem will be denoted by the
symbol SA;

2. If : range(f) = A}: the problem of enumerability of A; this mass
problem will be denoted by the symbol EA;

3. (Other examples) The problem of separability of A and B, i.e. If
f -1(0) = A & f -1(1) = B}; of course, this mass problem is empty if
A(1B 0: it is absolutely impossible to "solve" the problem in this case.
The problem of many-one reducibility of A to B: if : f -'(B) = Al.
The problem of extendibility of 0: If : f 01.
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A mass problem is solvable if it contains a recursive function, i.e., in-
formally, if we have some ways of effectively computing a solution to the
corresponding informal problem. Corresponding to this definition of solv-
able mass problem, there is an intuitive notion of reducibility between mass
problems. If A and B are mass problems, we say that A is (informally) re-
ducible to B if there is an effective procedure which, given any member of
B, yields a member of A, i.e. we have an effective procedure for solving the
problem corresponding to A given any solution to the problem corresponding
to B . The degree structure originated by this notion of reducibility turns out
to be a distributive lattice (in fact a Brouwer algebra), called the Medvedev
lattice. Despite its richness and, at the same time, the pleasant regularity of
its properties, the Medvedev lattice has not been extensively studied. Rogers
([10]) raised several questions about this lattice: many of these questions are
still open. The Medvedev lattice provides a more extensive context for both
Turing reducibility and enumeration reducibility. It is to be expected that
many of the global questions concerning these reducibilities can be profitably
investigated in this wider context. There are several problems concerning
automorphisms, automorphism bases and definability. Very little is known
about filters, ideals and congruences. There is a variety of questions related
to the Brouwer algebra structure of the Medvedev lattice; some of these ques-
tions deal with the problem of embedding Brouwer algebras in the Medvedev
lattice and its initial segments, with consequent applications to intermediate
propositional logics.

In this paper we review some of the existing literature on the Medvedev
lattice. During the exposition, we list several open problems.

1.1 The formal definition of reducibility
The formal definition of reducibility between mass problems is given through
the notion of a recursive operator. We shall refer to a listing {W : z E w} of
a large enough set of recursive operators, i.e. such that

1. '(') is defined (i.e. a partial function), for all partial functions 0;

2. (V recursive operator S2)(2z)(Vf)[Wz(f) = 11(f)]:

see [10] for a proof that such a listing exists.

Definition 1.2 We say that the mass problem A is reducible to the mass
problem B (notation: A < 13) if (3z)[W,z(13) C A]. (Notice that T,(B) C A
implies that T,(f) is total, for every f E B.)

The equivalence class [A] of A under the equivalence relation = generated
by < is called the degree of difficulty of A . Let M be the set of degrees of
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difficulty: M is partially ordered by the relation < defined by [A] < [B] if
and only if A < B. In fact,

Theorem 1.3 ([5]) The structure 9A = (M, <) is a distributive lattice with
0,1.

Proof. We just recall how the lattice-theoretic operations are defined. Given
n E w, functions f, g, and mass problems A , B , let n * f denote the function
defined by the clauses: n * f (0) = n, and n * f (x) = f (x - 1), if x > 0;
let f V g denote the function defined by the following clauses: f V g (2x) =
f (x), and f V g (2x + 1) = g(x); finally let n * A = {n * f : f E Al, and
A V B={ If v g : f E A & g E 13}. Let now A, 13 be mass problems: define
[A] A [13] _ [0 * A U 1 * 13]; [A] V [13] _ [AV 13]. Finally, let 0 = [A], where A
contains at least a recursive function, and 1 = [0].

It is easy to see that the above are well given definitions and make 912
a distributive lattice, 0 being the least element, and 1 being the greatest
element.

Notice that 0 is the "easiest" degree of difficulty, containing only solv-
able problems; 1 is the "most difficult" degree of difficulty: it is absolutely
impossible to solve the empty mass problem!

In the following, if P is any property of mass problems, we say that a
degree of difficulty A has the property P if A contains some mass problem A
having the property P. Thus, for instance A is discrete, if A contains some
discrete mass problem in the Baire topology of w", etc.

2 A common framework for Turing degrees
and enumeration degrees

Definition 2.1 For every set A, let SA = [SA], and EA = [£A]. The de-
gree SA is called the degree of solvability of A; EA is called the degree of
enumerability of A.

Theorem 2.2 ([5]) 1. The mapping [A]T H SA is an embedding of the
structure DT of the Turing degrees onto the degrees of solvability, preserving
0, V.

2. The mapping [A]e H EA is an embedding of the structure Te of the
enumeration degrees onto the degrees of enumerability, preserving 0, V.

Proof. The proof of 1. is immediate. As to 2, it is enough to observe that
if A <e B then there is an effective procedure for enumerating A given any
enumeration of B; use this procedure to define a recursive operator ' such
that, for every f, if range(f) = B, then range(IF(f )) = A. On the other
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hand if A e B, then it is not difficult to construct a function g such that
range(g) = B, but range(Tz(g)) A, all z, giving EA EB.

Remarkably, the degrees of solvability are definable in fit, as is shown in
the following theorem, which solves a problem raised in [10].

Theorem 2.3 ([2], [5]) Let p(x) =df (3y) [x < y & (dz)[x < z = y < z]].
Then the degrees of solvability are exactly the degrees of difficulty satisfying
p(x)
Proof. (= ([5]):) Given a degree of solvability S = [If }], let S' = [{n * g
'Pn(g) = f & g T f}]. Then S < S' and (VA)[S < A S' < A].

(. ([2]):) Suppose that A is not a degree of solvability. If A is finite then
clearly A does not satisfy p(x), since A is easily seen to be meet-reducible. If
A is not finite and A E A, then for every mass problem B such that B ¢ A,
we construct a mass problem C such that A < C and B C. Here is a sketch
of the construction.

(1) In order to get A < C, build C of the form C = {x,,, * fn : n E w}, where
fn E A; ensure also that xn E {0, 1} and n # m fn fm.

(2) Ensure that C satisfies the requirements:

Pe : IFe (C) ¢ B;

Re : We(A) ¢ C.

Given any mass problem X, let X- = {f- : f E X} (where, for every x,
f -(x) = f (x+l)). The mass problem C will be of the form C = U{Cn : n E w}:
letC_1=0.

Step 2e) (Requirement Pe) Choose x2e E {0, 1} and f2e e A such that
f2e C2e_1 and !e(C2e-i U {x2, * f2e}) g B. Failure to find xZe and f2e would
result in having 41,(D) C B, where

D=C2e-l U {x * f: x E {0,1} & f E A- C2e_1},

whence B < D. On the other hand we have also that D < A, via the recursive
operator T given by

4J(f) xi*fi, if (3i)[.fi9f]
0 * f, otherwise

where { fi : i < 2e - 1} are initial segments such that Sf, fl C2e_1 = { f=} (use
that the fi's are distinct; here, given f, we let Sf = If : f C f }). Finally, let
C2e = C2e-1 U {x2e * f2e}
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Step 2e + 1) (Requirement Re) Notice that we can not have

(Vf E A)(3g E C2e-1)(3x E {0,1})[We(.f) = x * g],

since otherwise we would obtain that A = 0 * CZe_1 U 1 * C2e_1, which would
imply that A is finite, contrary to the assumptions. Thus there exists a
function f E A, such that (Vg E C2e_1)(Vx E {0, 1})[re(f) x * g]. Fix
such an f : if re(f) = x * g, for some g E A - C2e_1 and x E {0, 1}, then let
x2e+1 = 1 - x and f2e+1 = g; otherwise let e.g. X2e+1 = 0, and let f2,+, be
any function such that fee+1 E A - C2e_1. Let C2e+1 = C2e U {x2e+1 * fee+1}. 0

Definition 2.4 For any degree of solvability S, let S' = least JA: S < Al.

Notice that 0' = [0], where 0 = if : f nonrecursive }.

Problem 2.5 ([10]) Are the degrees of enumerability definable? Or, at least,
is the property of being a degree of enumerability a lattice-theoretic property?

3 Lattice-theoretic properties
As remarked in [10] little is known about lattice theoretic properties of 932.
The following are very natural questions.

Problem 3.1 ([10]) Is 932 rigid?

Problem 3.2 Do the degrees of solvability constitute an automorphism basis
for 932?

Problem 3.3 Are the degrees of enumerability an automorphism basis for
932?

In [2], several lattice-theoretic properties are investigated.

Definition 3.4 Given mass problems A and B define A <,,, B if and only if
(V9 E 13) (Df (=-A)[f CT g].

The preordering relation <,,, originates a partially ordered structure 931,,,, in
the same way as < originates 931. The structure 9)I,,, is in fact a complete
distributive lattice, called the Muchnik lattice: see [7], [13]. For every mass
problem A, let C(A) = {g : (3f E A)[f <T g]}. It is easy to see that
[A]. = [C(A)]., (where [B],,, denotes the equivalence class of B, for any mass
problem B). Also: C(A) <,,, C(B) C(13) C C(A).
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Lemma 3.5 ([7],[13]) 1. The mapping I : 912v, -* 9n defined by IQA]") =
[C(A)] is an embedding preserving 0, 1, V and lowest upper bounds of arbitrary
families.

2. The mapping F : 9n -+ 9X,,, defined by F([A]) = [A]w is an onto
lattice-theoretic homomorphism.

Proof. Straightforward.
Let us say that a degree of difficulty is a Muchnik degree of difficulty if it

is in the range of the embedding I of Lemma 3.5 1. Then

Theorem 3.6 ([2]) The property of being a Muchnik degree of difficulty is
lattice-theoretic.

Proof. First notice that A is a Muchnik degree of difficulty if and only if it
contains a mass problem A such that C(A) = A. It is now easy to see that
A is the least degree of difficulty containing some mass problem B, such that

(V{ f})[r3 < If I = (3g E A)[{g} < If }11 -

Finally use the fact that the degrees of solvability are mapped to degrees of
solvability by any automorphism (see Theorem 2.3).

In a similar way, we can show e.g. that the property of containing a mass
problem of the form If : fo <T f }, for any function fo, is lattice-theoretic,
etc.

Problem 3.7 Do the Muchnik degrees form an automorphism basis for 93Z ?

4 The structure
4.1 Incomparability results
The Medvedev lattice is as big as it can be:
Theorem 4.1 ([8]) 9f has antichains of cardinality 22ND
Proof. Let A = {fz : i E I}, with III = 2s°, be such that {[fi]T : i E I}
is an antichain of ZT. Given any X C_ I, let Ax = { fi : i E X}. Then,
for every X, Y C I such that X IY, we have Ax I Ay. The result then follows
from observing that there are subsets J C P(I) such that IJI = 22`0 and if
X,Y E J and X Y then XIY.

There are however maximal antichains of two elements!

Example 4.2 For any function f , let 13 f = {g : g T f}, and let Bf =
[3 f]. Then it is easy to see that 113f, [If}]} is a maximal antichain (in fact,
(VC) [B f C C < [{ f }]]. Notice also that B f A [If)] = max {C : C <
B1}.
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Theorem 4.3 ([2]) If A 54 0, 0', 1, then there is a countable B such that B
is incomparable with A.

Proof. Let A E A, where A 0, 0', 1. Then, for every n, there is some
nonrecursive function fn such that qfn(fn) V A (otherwise Wn(0) C_ A, hence
A < 0'.) Let 13 = { fn : n E w}. Then A ¢ B. If B < A, then take a function
f which is Turing incomparable with all the members of B and If } A (such
an f exists, since there can be at most countably many functions h such that
{h} A, being A # 0). If A ¢ If }, then AI{ f }. Otherwise, B A, i.e.
AIB.

The following result establishes a sufficient condition for extending count-
able antichains of degrees of difficulty.

Theorem 4.4 ([2]) Let {An : n E w} be such that 0' < An < 1, and, for all
n, no nonzero finite degree of difficulty is below An. Then there is a countable
B such that BIAn, for all n.

Proof. Let An E A. Construct a countable mass problem B = f fn
n E w}, and a sequence of functions {gn : n E w} such that B fl {gn
n E w} = 0. At step n we define fn, gn. Suppose n = (i, j). Let fn
{go,... , gn-11 be a nonrecursive function such that q'i(fn) 0 .A, (hence we
satisfy the requirement q'i(L3) g A;): such a function exists since otherwise
we would have A; < 0). Finally define gn to be a any function such that if
Ti(f) total for all f E A,, then gn E Ti(A;) and gn { fo, ... , fn}: such a
function exists, since otherwise { fo, ... , fn} < A,, via Ti. Since gn B, this
guarantees that 'i(A;) ¢ B.

We can characterize the countable lattices which can be embedded in fit.
Given a partial order T, let 1®T ®1 be the partial order obtained by adding
an element at the bottom and an element at the top of T, respectively.

Theorem 4.5 ([13]) A countable distributive lattice 2 with 0, 1 is embed-
dable in fit if and only if 0 is meet-irreducible and 1 is join-irreducible.

Proof. Clearly, if 2 is embeddable in fit then its least element is meet-
irreducible, and the greatest element is join-irreducible, since this holds of
fit as well. To show sufficiency, let 93 C T(w) be an atomless countable
Boolean algebra, where T(w) is the Boolean algebra of the subsets of w. It is
not difficult to see that we can find a family {g, gn : n E w} of nonrecursive
functions and a recursive operator AP such that, for all m, n,

1. g(0) = 0, gn(0) = n + 1;

2. m0ngmlT9n&gm V9n=T 9;
3. m nT(gmV9n)=9
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For every subset X C w let

AX - { {g}'
xEX},

otherwise

Then Y C X Ax < Ay: it is now easy to see that the mapping X H [Ax]
yields a lattice-theoretic embedding of the dual It of B into 9A mapping 0
into [{gn : n E w}], and 1 into [{g}]. Then claim then follows from the well
known fact that for every distributive lattice £, we have that 1 ® 2 ® 1 is
embeddable in 1 ®'t ® 1.

Remark 4.6 Dyment ([2]) gives several topological interpretations and re-
finements of some of the results reviewed in this section. For instance, it is
shown that one can define a topology on the collections of mass problems,
such that, for any nonsolvable A, the class {t3 : B < A} is of first category;
it is interesting to note that one can also define a topology with respect to
which, if A is such that, for no dense B, is A < B, then {B : A < 13} is of
first category.

4.2 Empty intervals
A fairly straightforward refinement of the proof of Theorem 2.3 leads to the
following useful characterization of empty intervals of 931.

Theorem 4.7 ([2]) Given A, B, with A < B, we have that (A, B) = 0 if
and only if (3 degree of solvability S)[A = B A S & B S & B < S'].

Proof. Let A < B, and let A E A, 13 E B.
Suppose (A, B) = 0. We observe that if A is finite, then there

exists f E A such that 8 If}; let E E S', where S = [If }]. Then
A <_ B A If } < B, whence A - B A If} < B. On the other hand, B A S ¢ A,
otherwise B A E < If }, but then 13 < If } or E < If}, contradiction. Then
A<8AE-B,hence B<E.

If A contains no finite mass problem, and no degree of solvability S exists
such that A = B A S, B S, B < S', then an easy modification of the proof
of Theorem 2.3 enables us to construct a mass problem C' such that, letting
C = B A C', we have that A < C < B.

Let A = BAS & B S & B < S', where S is a degree of solvability;
let S E S, and E E S'. Suppose that A < C < B; then B A S < C, via, say,
some recursive operator 41. Since '(C) C 0 * B U 1 * S, there are Co, C1 C C
such that IF(Co) C 0 * B and W(C1) C 1 * S; moreover Co A C1 < C. We can
not have C1 < S since, otherwise, we would have C < B A S. Hence S < C1.
It follows that 9 < C1, hence B < Co A C1 < C, contradiction.
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Example 4.8 If B is countable, then for any A , with A < B, there is
some mass problem C such that A < C < B: indeed, for every f such that
B If }, one can find a function g such that If } < {g}, but B {g}, hence
[B] [If fl'.

4.3 Bounds of countable families
The Medvedev lattice is not a complete lattice as follows from the results
of this subsection. Given a lattice Q, we say that a set X C Q is strongly
A-incomplete if (bY C_ X)[Y finite (fix E X)[AY ¢ x]]. Dually one
defines the notion of a strongly V-incomplete set X C Q.

Theorem 4.9 ([3]) No countable strongly A-incomplete collection of de-
grees of difficulty has greatest lower bound.

Proof. Let {An : n E w} be a strongly A-incomplete countable collection
of degrees of difficulty (for instance let An = [{ fn}], where the functions
fn's are pairwisely Turing incomparable). We claim that {An : n E w} does
not have greatest lower bound. Let An E An, for every n, and let 8 be
a mass problem such that B < An, each n. In order to show the claim,
construct a mass problem C such that C < An, all n, and C ¢ B. Construct
C of the form C = U{xn * An : n E w} (with x,n xn if m n), hence
C < An, all n. We define by induction two sequences {xn : n E w} and
{k, : n E w} of numbers. At step n, we define xn so as to satisfy the
requirement qfn(B) g C. By assumptions, there exists f E B such that
Tn(f) U{xi * A : i < n}, since [U{xi * Ai : i < n}] = Ai<n A. Choose
such a function f and let kn = %Pn(f)(0) if Tn(f) is total, kn = 0 otherwise:
finally choose xn>max({xi:i<n}U {k2:i<n}. 0

Definition 4.10 A mass problem A is effectively discrete if (b' f, g E A) [f
9 f (0) 4 9(0)]

Theorem 4.11 ([3]) No countable strongly V-incomplete collection of ef-
fectively discrete degrees of difficulty has lowest upper bound.

Proof. Let {An : n E w} be a countable strongly V-incomplete collection of
degrees of difficulty and for each n let An E An be an effectively discrete
mass problem and let B be such that, for all n, An < B. We want to
construct a mass problem C such that, for all n, An < C, but B C. In order
to satisfy the requirement Pn: Tn(C) 5K B, we define at step n a number
kn such that, if Win is a recursive operator such that `Iiin (B) C_ Ak then
'Fi.Tn(C) 1Z Ak.. Given any initial segment h, and functions fo, . . . , fn, let
h(fo,... , fn) = h U {((x, i), fi(x - xi)) : x > xi, i < n}, where for each i < n,
xi = least{x : h((x, i))not defined }.



298 Andrea Sorbi

Step n) Define a number kn, and an initial segment hn as follows (assume
h_1 = 0).

Let kn = least{i : Ai Ao V ... V An-1} (let ko be the least number such
that Ak0 is not solvable). Such a number exists since the family is strongly
V-incomplete.

Case 1) (39o E Ao,...,39n-1 E An-1)(Vf)[f Q hn-1(9o,...,9n-1)
TinIn(f)(0) T]. Then in this case, let hn = 0: the requirement Pn is
automatically satisfied, if we ensure that there is some f E C such that
f D h.- (go, , 9n-1)

Case 2) Otherwise. Then, for every go E A0,. , 9n-1 E An-1, there
exists an initial segment F(hn-1, go, . . . , gn-1) extending hn_1 and compatible
with hn_1(90, , 9n-1) such that Win Y'n(F(hn_1, 90, , 9n-1)) (0) J. Since
Akn ¢ A0 V ... V An_1, there exist functions go E A1,... , 9n-1 E An-1
such that V Akn, where V = U{q1i,Wn(f) : f 2 U
F(hn_1, go) .. . , gn-1)}. Fix such functions 90,... , gn_1. If g V, for all
g E A", then define hn = hn_1 U (F(hn-1, go, . , 9n-1) - hn-1(90, , 9n-1))
Otherwise, since Akn is effectively discrete and there exists exactly one pair
(0, x) E V, there exists also exactly one function fn E Akn such that fn C V.
Since V ¢ fn, let h be an initial segment extending F(hn-1, 90, , 9n-01
compatible with hn_1(90, , 9n-1), such that ,,W(h) (Z fn. Finally let
hn = hn_1 U (h - hn-1(9o, , 9n-1)) It clearly follows that, for no function
f 2 hn(90, , 9n-1), can we have ` in `Yn(f) E Akn.

Let now Cn = {g : (3fo E AO),. .. , (3fn E An) [9 D hn(fo, ... , fn)]}, and,
finally, let C = (1{Cn : n E w}. It immediately follows from the construction
that 'Pin Wn(C) (Z An. Also, one immediately sees that, for each n, there exists
a recursive operator T, such that, if g D hn(f0, ... , fn), then T(g) = fn: thus
An < Cn, hence An < C, since Cn C C.

Since the degrees of solvability are effectively discrete degrees, one obtains
as a corollary of the previous theorem Spector's result on the nonexistence of
lowest upper bounds of ascending sequences of Turing degrees. In a similar
way it is possible to show

Corollary 4.12 No countable strongly V-incomplete family of degrees of
enumerability has lowest upper bound.

Proof. Similar to the proof of Theorem 4.11.

Remark 4.13 There exist however infinite families with nontrivial lowest
upper bound, as follows from Lemma 3.5: any collection of Muchnik degrees
of difficulty has lowest upper bound.
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5 Irreducible elements
It is not difficult to characterize the meet-reducible elements.
Theorem 5.1 ([2]) A degree of difficulty A is meet-reducible if and only if
A contains a mass problem A such that there exists r. e. sets Vo, V1 of initial
segments such that

(Vf E A)(3i E {0, 1})(3f)[f E V& f C f];
{f:(3f)[feVo&jc.f]}I{.f:(3f)[fEV1&fcf]}.

Proof. Given V0, V1, let Ao = If : (31) [1 E Vo & and
Al = If : (3f)[1 e V1 & f C_ f ] }. Then it is easy to see that Ao I A1, and
Am A0AA1.

(=:) If A = A0 A A1i Ao E Ao, Al E A1, and T is a recursive operator
such that '(A) C 0 * Ao U 1 * A1i then the problem 0 * Ao U 1 * Al and the
r.e. sets Vo = If : IF(f)(0) = 0}, V1 = If : W(f)(0) = 1} satisfy the claim.

The previous theorem is a useful tool for testing if a given element is
meet-irreducible. Let us say ([7]) that a mass problem A is uniform if

(bf)[SfnA?O= f *AcA].
As an application of the previous theorem we have for instance (see [2])

Corollary 5.2 Every uniform degree of difficulty is meet-irreducible. Hence
every Muchnik degree of difficulty is meet-irreducible.
Proof. If A is uniform and B A C < A via some recursive operator T then
suppose that there exists some function f E A such that T (f) E 0 * B: it
follows that, for some initial segment 19 f, '(f)(0) = 0. But f * A C A,
hence 4(f * A) C 0 * B. It easily follows that B < A. Thus either B < A or
C<A.

_

We do not have characterizations of the join-irreducible elements. Exam-
ples of join-irreducible elements are provided by Example 4.2: the element
B f is join-irreducible for every function f . We also notice the following useful
lemma.

Lemma 5.3 If A is a mass problem such that there exist functions f E
A, 91, 92 C(A) and g1 IT92 and f <T 91 V 92, then the degree of difficulty [A]
is join-reducible.
Proof. Under the assumptions, it is easy to see that

[A] = [A A {g1 }] V [A A {g1 }].

On the other hand, it is clear that [A A {g1 } I [A A {g1 }].

Problem 5.4 Characterize the join-irreducible elements.
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6 More on the degrees of enumerability. The
Dyment lattice

In this section we collect some observations on the degrees of enumerability.
We then define the Dyment lattice which extends the Medvedev lattice in
much the same way as the enumeration degrees extend the Turing degrees.
We show that there is an adjunction between the two lattices.

6.1 Some properties of the degrees of enumerability
The following theorem characterizes the degrees of enumerability correspond-
ing to quasi-minimal e-degrees.

Theorem 6.1 ([2]) Let A be a nonsolvable mass problem, and let A be a set
of quasi-minimal e- degree. If A < EA then A is not countable.

Proof. Suppose that [A]e is quasi-minimal, and let A = {fn : n E w}
be a countable and nonsolvable mass problem. It is not difficult, given any
n, to find, by finite extensions, a function f such that range(f) = A and
Tn(f) # fn. Failure to find f for some n would result in giving fn <e A, a
contradiction.

The remaining results of this subsection are contained in [13].

Theorem 6.2 Every degree of enumerability is meet-irreducible. Every non-
zero degree of enumerability is join-reducible.

Proof. It is easy to see that, for every set A, the problem EA is uniform, so it
follows from Corollary 5.2 that EA is meet-irreducible. That every nonzero
degree of enumerability is join-reducible, follows from Lemma 5.3.

Theorem 6.3 Let E be a degree of enumerability. Then (VB > E)[(E, B) #
0]. Moreover, (`dB < E)[(B,E) 54 0].

Proof. In order to show that (E, B) 34 0, for any B > E, use Theorem 4.7
and the fact that each degree of enumerability is meet-irreducible.

To show the other part, use again Theorem 4.7 and the following observa-
tion. Given any degree of enumerability EA > 0, we can show that for every
degree of solvability S, if EA $ S, then EA $ S. To see this, it is enough
to show that for every function f such that A ¢e f one can find a function
g such that f <T g and A :e g: failure to do this would result in A <e f, a
contradiction.
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6.2 The Dyment lattice
Let P denote the collection of all partial functions from w to w. A mass prob-
lem of partial functions is any subset A C_ P. Given mass problems of partial
functions A, 8, we say that A is e-reducible to 13 (notation: A <, 13: the
context will always make clear whether the symbol <e is used to denote enu-
meration reducibility between sets of numbers, or the above given reducibility
between mass problems of partial functions) if there exists a partial recursive
operator 1 such that (VVO E L3)[¢ E domain(Q) & 11(4) E A].

This preordering relation originates a degree structure which is a distribu-
tive lattice with 0, 1 called the Dyment lattice (see [2] and [13]) and denoted
by 9J1,. The members of 072, are called partial degrees of difficulty ; [Ale
denotes the partial degree of difficulty of A. The operations of J2, are:
[A]e, A [13], _ [A A B]e; [Al, V [13]e = [A V 8]e (where the operations A, V
on mass problems of partial functions are defined in a similar way as for mass
problems); moreover 0, = [{0 : 0 partial recursive}] and 1, = [0], are the
least element and the greatest element, respectively.

Definition 6.4 1. A total degree of difficulty is a partial degree of difficulty
containing a mass problem consisting of total functions;

2. a partial degree of enumerability is a partial degree of difficulty of the
form for some partial function 0.

Clearly there is an embedding of De onto the partial degrees of enumerability:
just view De as the upper semilattice of the partial degrees (i.e. equivalence
classes of partial functions: see [10]): we have 0 <e zt q {0} <e {zG}.

Theorem 6.5 The partial degrees of enumerability are definable in Me by
the formula p(x) of Theorem 2.3.
Proof. The proof is similar to that of Theorem 2.3, but it has some original
features since it is no longer true, in 9J2e1 that the finite partial degrees of
difficulty that are not partial degrees of enumerability are meet-reducible.
For instance, it is easy to find examples of partial functions 01, 02 such that
01 C 02, but 01 1,42: thus {01i 02} <e {&1} A {02}.

Let t : JJ2 -* i!fe be the natural embedding, i.e. t([A]) = [A],. Notice
that range(t) _ {Ae : A, total}. Now, given a mass problem of partial
functions A, let

A* = {f : (30 E A) [range(f) = graph(O)l}.

Let E : 0fe -k 071 be defined by e([A],) = [A*]: it is not difficult to see that e
is well defined and it is in fact ([13]) an onto lattice-theoretic homomorphism.
Theorem 6.6 ([2]) For all A, E S911ef and B E 931 we have: A, <_e t(B)
e(Ae) < B.
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Proof. It is not difficult to show that, for every A,

[A*]e = least{Be : Be total & [A]e, <e Be}.

For every partial function 0, let EO = t(e([{cb}]e)). El is called the total
degree of enumerability of 0.

Corollary 6.7 ([2]) The property of being a total degree of enumerability is
invariant under all automorphisms F of i9)2e such that F(t(9J )) C t'(9J ).

Proof. Immediate from the previous theorem and Theorem 6.5.

7 More on the Turing degrees
In this subsection we make some remarks on degrees of difficulty of the form
[C({g})], for some function g. Very useful is the following lemma.

Lemma 7.1 ([2]) If A is discrete and not solvable, then for every 13,

A < B 13 nowhere dense .

Proof. Let A, B be given, and let T be such that T(B) C A. In order to
prove the claim, it is enough to show that X = If : T (f) E Al is nowhere
dense. Otherwise there would be an initial segment fo such that X is dense in
Sh (we recall that the sets of the form Sf are a basis for the Baire topology).
Let fo D .To be such that AP (fo) E A: since A is discrete, let 9o be such that
S 0 n A = {IF (fo)}; thus, let fl 2 fo be such that (Vg D f1)[I(g) E A =
11(g) _ W(fo)]. Then qj(fo) = U{W(j) : g 2 fl}, giving 'F(fo) recursive, i.e.
A solvable, a contradiction.

Theorem 7.2 If A is not solvable and countable, then for every function g,
A C({g}).

Proof. Let A = {fi : i E w} be nonsolvable, and let B = C({g}). One can
show that for every n, if Tn (f) is total for every f E 13, then there exists some
function f E B such that (Vi) [W (f) # fij: construct such an f of the form
f = hVg, where h = U{hi : i E w}, and {hi : i E w} is an increasing sequence
of initial segments: failure at step i to find an initial segment hi such that
Tn(hi V g) fi would result in getting fin({ f V g : f D hi_1}) C_ {fi}, which,
by the previous lemma, would imply If V g : f D hi-11 nowhere dense, a
contradiction (as usual, assume that h_1 = 0).

Refinements of the previous theorem give:

Theorem 7.3 For every function g, let g' be a function belonging to the
Turing jump of [g]T. Then
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1. if A is not solvable and countable then A If: g <T f}.
2. If : f nonrecursive & f <T g} If : g <T f <T g'}; If

f nonrecursive & f <T g} If : f =T g'}; if g is not recursive
then If : f -T g}If If : f =T 9'};

3. if A is not solvable and countable and A {h}, then A C({g})V {h};
hence if g is not recursive and does not have minimal Turing degree, then
If: f -T g} $ C({g}) V If : f nonrecursive & f <T g}.

Proof. For (1) modify step n in the proof of the previous theorem so as to
construct f = h V g'. Inspection of the proof of the previous theorem shows
that we can construct f such that f <T g', so (2) easily follows. For (3)
relativize the proof of the previous theorem to h. 0

8 Filters and ideals
Very little is known about nonprincipal filters and ideals of the Medvedev
lattice (see [10]). We review some filters and ideals introduced in [2] and [12].
The results of this section, unless otherwise specified, can be found in [12].

Given any collection X of degrees of difficulty, let FX and Ix denote the
filter and the ideal, respectively, generated by X.

Given a mass problem A, let rA = { [ f ]T : f E A & (Vg E A) [g 54T f ] }.
We say that a mass problem A has countable basis if IPA is countable and
(dg E A)(3f)[f <T g & [f]T E rA]. We say that A has generalized countable
basis if rA is countable.

We now define several classes X of degrees of difficulty.

Definition 8.1 Let Solv = {A : A # 0 & A degree of solvability }; En =
{A : A# 0 & A degree of enumerability }; Dis = JA: A 0 & A discrete};
Edis = {A A 0 0 & A effectively discrete }; Count = {A : A 0 0 & A
countable };Cl={A:A00&Aclosed };CB={A:A00&Ahas
countable basis}; GCB = {A : A 54 0 & A has generalized countable basis
}; D = JA: A dense}.

Since 0 X, all such X with X # D, we have that Fx is proper. Since
10 D, we have that ID is proper.

We observe that if X E { Dis, Edis, Count, CB, GCB, Cl} then X is in
fact a sublattice of 931. Thus, in this case, Fx = JA: (3B E X)[B < A]}.

Theorem 8.2 The following hold: Fsot C FEdi3 C FDis C Fcount C FGCB.
Moreover FEdis 9 FCB; FCB 9 FC0,nt; FCB C FGCB; Fsot C FCB; FEdis C
Fcj; FDis Fcj
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Proof. It is simple to show that the various inclusions hold. As to show that
we have proper inclusions, or that some inclusions do not hold we can argue as
follows. To show that Fcount Vz FDis, FCB 9 Fsoly, use Lemma 7.1. To show
that FCB g Fc,,,,t use Theorem 7.2. To show that FEdis Fsoly consider
as a counterexample the degree of difficulty of any effectively discrete mass
problem consisting of two functions whose T-degrees constitute a minimal
pair. To show that FGCB g FCB, consider the mass problem A = { f :
-'(2g <T f)[[g]T minimal]}. To show that FDis g FCi, construct (see [1]) a
discrete and not solvable mass problem A such that, for every n, either there
exists a function f E A such that W (f) is not total, or, otherwise, there exists
a recursive limit point g of A, such that T,,(g) is total, so that, for every B,
if ' (A) C 13 and B is closed, then B is solvable. To show that FEdis V= FCB,
consider the degree of difficulty of any nonsolvable and effectively discrete
mass problem consisting of functions whose T-degrees, Plus OT, constitute a
densely and linearly ordered ideal of DT.

Theorem 8.3 Fsoiv C FE,,; FEdis FE,,; FE,, FCB

Proof. FE,, Fsoiv follows from the existence of quasi-minimal e- degrees.
To show FEdis ¢ FE, take as a counterexample the degree of difficulty of any
effectively discrete mass problem of functions whose e-degrees constitute
pairs of minimal pairs in the e-degrees. Finally, FE,, 54 FCB follows from the
proof of Theorem 6.1.

The above filters and ideals are all nonprincipal.

Theorem 8.4 If X E {Sole, En, Dis, Edis, Count, CB, GCB, Cl} then
Fx is nonprincipal. Moreover, the ideal ID is nonprincipal.

Proof. Let X E {Dis, Edis, Count, CB, GCB}. To show that FX is non-
principal, it suffices to show that, for every B E X, there exists A E FX
such that B A. Given any B E X, find a degree of solvability S such
that B S: this follows directly by known incomparability results for the
T-degrees. For X = Cl see [1]. For X = Solv and X = En, use also that
the members of X are meet-irreducible.

For most of the filters described above, the cardinality of the corresponding
quotient lattice is determined by the following theorem.

Theorem 8.5 The cardinalities of 9911/FGCB and fit/FEf are 22"0.

Proof. Let {f(,) : (x, y) E I2} be a collection of functions whose T-degrees
are minimal and constitute an antichain (here I denotes a set of cardinality
2K0). For every set A C I, let AA = {g : (3x E A)(1y E I)[f(x,y) <T g]}
(notice that the cardinality of FAA is 2'0). It is easy to see, using Corollary
5.2, that if A 54 B then [[AB]]GCB [[AA]]GCB (where, given a degree of
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difficulty A, the symbol [A]GCB denotes its equivalence class in the quotient
lattice 9J1/FGCB). This shows that 9J1/FGCB has cardinality 22"0.

As to show that the cardinality of 9J7/FE,, is 22"0, consider a function f
and a collection {gx : x c I} of functions whose T-degrees are an antichain,
and ([f]e, [9x]e) is a minimal pair of enumeration degrees, for all x. Then the
collection {[[AA]]Ef.: A C I}, where AA = {g : f <T g V (3i E A) [gi <T g]},
has cardinality 22"0 in the quotient lattice.

Problem 8.6 Show that the cardinality of S9R/ID is 22"0.

An important topic when we study a lattice is the investigation of its prime
filters and prime ideals. A trivial example of a nonprincipal prime filter is
9)1 - {0, O'}. A trivial example of a nonprincipal prime ideal is 9) - {1}. A
more interesting example is given by:

Theorem 8.7 ID is prime.
Proof. Suppose that Do, D1, D are mass problem such that D is dense and
Do A Dl < D, via, say the recursive operator T. Then either '(D) C 0 * Do
or there exists an initial segment f such that ' (f) (0) = 1, and therefore
1 * Dl < {f : f * f E D}, via the recursive operator Af.T (f * f). Since
f f : f * f E D} is dense, the proof is complete.

Let F = 9) - ID. It follows from lattice theory that F is a prime filter.
It is shown in [1] that F is nonprincipal and 19)/F1 = 22"0, and Fc1 C F. It
follows also from next theorem that FDis C F (hence Fct C F).

Theorem 8.8 If X E {Sole, En, Edis, Dis, Count, CB, GCB}, then Fx
is not prime.

Proof. Let f, Bo, B1 be such that f <e Bo ® B1, where Bo, B1 belong to
quasi-minimal e-degrees. Then EB0, EB, FCB (this follows from Theorem
6.1), but EB0 V EB, E Fsoty This shows that Fx is not prime if X E
{Soly, Edis, Dis, Count, CB}. As to show that FGCB is not prime, consider
a T-degree a and two families of minimal T-degrees R, S such that I RI =
ISI = 2'0 and (Vr E R)(Vs E S)[a < r V s] (in fact, for every a, one can find
such families). Then AR(= [{g : (2f)[[f]T E R & f <T g}]) V FGCB, and
As(= [{g : (3f) [[f]T E S & f <T g}]) FGCB, but AR V As E FGCB, in fact
AR V As E FCB.

Finally, to show that FE,, is not prime, use the following fact about
e-degrees (below, A[i[ denotes the ith- column of A): for every non r.e.
set B, there exist a set A and a recursive function f such that B :& A[n] , all
n, and B <e A[2m[ ® A[2n+11 (all m, n) via the enumeration operator 4 f(m,n),
and ([A [A[2n+1]]e) is a minimal pair in the e-degrees. Then it is easy to
define two degrees of difficulty A, B, such that A, B V FEn, but EB < A V B.
11
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Problem 8.9 Show that FC1 is not prime.

9 The Medvedev lattice as a Brouwer algebra
A distributive lattice 2 with 0, 1 is a Brouwer algebra if it can be equipped
with a binary operation -+ such that, for all a, b E 2,

a-->b=least{cE2:b<aVc}

(equivalently: (Va, b, c) [b < a V c a -> b < c]). In the following, we will use
the term B-homomorphism to denote any lattice-theoretic homomorphism
which preserves 0, 1 and -+.

We recall that a distributive lattice with 0, 1 is a Heyting algebra if its dual
is a Brouwer algebra.

Theorem 9.1 ([5]) 9M is a Brouwer algebra.

Proof. Given mass problems A, 13, define

A->13={n* f : (VgEA)[ n(gV f)E13]}.

Then the following are easily seen:

13 < A V (A -+ 13), via i, where T (g V (n * f)) ='n(g V f );

(VC)[13 < A V C A -* 13 < C] : indeed, if Wn(A V C) C 13 then let
V(f) = n * f : clearly w'(C) C A -+ B.

Thus, we have that [A -+ 13] = least {C : [8] < [A] V C}. 0
Dyment (see [2]) defines a topology on the collection of mass problems,

such that, if B ¢ A, then {C : A -+ 8 < C} is of first category.
We notice however

Theorem 9.2 ([13]) 9J is not a Heyting algebra.

Proof. It can be shown that, for every nonzero degree of solvability S, there
exists an effectively discrete degree B such that the set {C : S A C < B}
does not have a greatest element: given a nonzero degree of solvability S, let
{g} E S. Construct a countable mass problem { fn : n E w}, such that, for
every m, n with m # n,

g<Tfn&fm(0)0 fn(0)&fmlTfn;

Tn(fn) 5A 9-
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Thus B = I fn : n E w} is the desired degree of difficulty. 0
In the next theorem we characterize the finite Brouwer algebras that are

B-embeddable in 911. We will then discuss some of the consequences of this
theorem. Let B' denote the class of Brouwer algebras in which 0 is meet-
irreducible and 1 is join-irreducible.

Theorem 9.3 ([14]) A finite Brouwer algebra 2 is B-embeddable in 911 if
and only if £ E B'.

Proof. Clearly, the condition 2 E B' is necessary for a finite Brouwer algebra
to be B-embeddable in 911: this follows from the fact that 911 E B'.

We sketch the proof of the right-to-left implication. The proof is broken
into several claims. Given any partial order T, let F(43) be the free distribu-
tive lattice with 0, 1 generated by the partial order ' 3 (hence q3 embeds into
F('43) as a partial order). It is not difficult to see:

Claim 1 For any poset T, F('41) is a Brouwer algebra, in fact F(13) E B'.

We will now show that F(T) is B-embeddable in 911, for a large class of
posets' 3's. In fact, F(DT) is B-embeddable in 911.

Let now 2 be the two-element chain. Define BJ to be the smallest class of
Brouwer algebras such that

1. 2 E Bj;

2. if 2 E Bj then 1 ED 2EBi;

3. Bj is closed under finite products.

Since a Brouwer algebra 2 is subdirectly irreducible if and only if £ - 2 or
2 1 ® £', for some Brouwer algebra Q', it follows by the Birkhoff theorem
on subdirectly irreducible algebras that, for every finite Brouwer algebra Q,
there exists £' E Bi such that 2 is B-embeddable into 2'. Thus, it is enough
to show that for every 2 E Bj, 1® 2 G 1 is B-embeddable in 931.

We now notice

Claim 2 For every E E Bj, there exists a finite posetT such that 1® 2 ®1
is B-embeddable in F(T).
To see this, we argue by induction on the complexity of $ as a member of
Bj, with respect to the three clauses of the definition of Bi. The most
difficult part consists in showing that if {Ci : i E I} is a finite family
for which we assume that, for all i, there exists a poset 43 such that 1
Zi ® 1 is B-embeddable in F(Ti), then we can show that 1 ® (fl£i) ® 1 is
B-embeddable into F(II Ti), where jl Ti denotes the coproduct of the Ti's,
in the category of partial orders.
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Claim 3 The Brouwer algebra F(DT) is B-embeddable into 931.

To prove the claim, let 'y : DT - 9A be defined by: y([f]T) = B f
(see Example 4.2). Let i be the lattice-theoretic homomorphism (preserving
0, 1), i : F(AT) -> 931, such that i([f]T) = y([f]T): such a homomorphism
exists by the universal mapping property of F(DT) (DT being a sub-poset
of F(ZT))

The proof of the claim is based on the fact (see Example 4.2 and Corollary
5.2) that each Bf is join-irreducible and meet-irreducible and that infima of
finite collections of degrees of difficulty of the form Bf are dense and uniform,
so that we can apply the following result, which, with routine calculations,
implies that i preserves the Brouwer algebra operation -f.

Claim 4 If C is dense and uniform then, for all A, B,

C-4AAB=(C->A)A(B-+ C).
In order to prove Claim 4, let C be a dense mass problem, and let A, B, X
be mass problems such that A A B < C V X, via a recursive operator T. For
i = 0,1, define

Xi={f EX:(a.f)[FYV f)(0)1=ill.
Then X = Xo A X1, and A < C V Xi, for i = 0, 1. To show for instance
that A < C V Xo, one can use the recursive operator i' defined informally as
follows: in order to compute T' (f Vg), given any enumeration off Vg, look for
initial segments f, g such that 19 f and g C g, and 'P(f V g)(0) 1= 0; if no
such initial segments are found then 1Y' (f V g) is undefined, otherwise for the
first such pair f , g let %Y(f V g) = %P ((f * f) V g): density and uniformity of C
ensure that I* f E C if f E C, then W' (f V g) E 0* A whenever f Vg E C V Xo,
hence A < C V Xo.

The following claim follows by easy calculations.

Claim 5 If T1, `P2 are posets andT1 is order-theoretically embeddable into
T2, then F(T1) is B-embeddable into F(T1).

We are now in a position to conclude the proof of the theorem. Since every
finite partial order is embeddable into TT, we have that for every Brouwer
algebra 2 E B', there are (by Claim 2) a Brouwer algebra Q' E Bj, and a finite
partial orderT such that £ is B-embeddable in 1® 2(D and 1® 2(D is
B-embeddable in F(T). But, by Claim 5 F(13) is B-embeddable in F(AT).
Finally the result follows from Claim 3. O

Interest in Brouwer (Heyting) algebras lies also in the fact that they are
used for a semantics of certain intermediate logics. In the following we refer
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to a propositional language built up from an infinite countable set of propo-
sitional variables. Let Form denote the set of well-formed formulas. If L is a
Brouwer algebra, we say that a function v : Form -> L is an L-valuation,
if for all a, 0 E Form, we have v(aA/3) = v(a)Vv(Q), v(aV0) = v(a)Av(,3),
v(a -,3) = v(a) -> v(/3), v(-ia) = v(a) -* 1 (where in the left hand side of
these equations the symbols A, V, -+ denote propositional connectives, and in
the right hand side the same symbols denote operations of L).

Given any Brouwer algebra L, and a E Form, let L = a if v(a) = 0, for
all L-valuation v; finally let Th(L) = {a E Form : L = a}.

Let Int, Class denote the theorems of the intuitionistic propositional cal-
culus and of the classical propositional calculus, respectively. Any deductively
closed set E C Form such that Int C E C Class is called an intermediate
logic. We are interested here in the intermediate logic Jan (after Jankov),
i.e. the deductive closure of Int U {-ia V --a : a E Form}. We note the
following result ([6]):

Corollary 9.4 Th(912) = Jan.
Proof. The result follows from Theorem 9.3 and the following observations:
(1) if Ll is B-embeddable in L2, then Th(L2) C_ Th(L1) (see e.g. [9]); (2)
Jan = f{Th(L) : L E B' & L finite } (see [4]). On the other hand, simple
calculations show that Jan C Th(at).

Notice that, by Claim 3 and Claim 5 in the proof of Theorem 9.3, we
can show that, if < 20 is a cardinal number, then the free distributive
lattice with 0, 1 on generators is B-embeddable in 9)2. More embeddings
of Brouwer algebras will be pointed out in the proof of Theorem 9.10 below.

Problem 9.5 Find examples of natural classes of infinite Brouwer algebras
that are B-embeddable in 992.

Problem 9.6 Show that for 992, one can prove an embedding theorem similar
to Theorem 9.3. What is Th(93,)?
It is well known that if L is a Brouwer algebra and I is an ideal, then L/I
is still a Brouwer algebra. Clearly Th(L) C Th(L/I), given the existence of
the canonical onto homomorphism v : L -+ L/I. We recall
Theorem 9.7 ([15]) If I is a proper principal ideal, then a finite Brouwer
algebra L is B-embeddable in 91/I if and only if L E B'. It follows that
Th(L/I) = Jan.
Proof. It is easy to see that the proof of Theorem 9.3 relativizes to any
proper principal ideal.

Theorem 9.3 and the previous theorem make use of embeddings into 9)2
whose ranges consist of dense degrees. It is therefore natural to ask the
following question.
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Problem 9.8 Describe the finite Brouwer algebras that are B-embeddable
in 972/ID. What is Th(9)1/ID)?

If G is a filter, then 972/G is not necessarily a Brouwer algebra. However, if G
is a principal filter, then 971/G is a Brouwer algebra, as 971/G ^ {B : B < A},
where A generates G.

Problem 9.9 Study the set 9 = {Th(971/G) : G proper principal filter}.

We observe that Class E 9: just take the principal filter generated by 0'.
Some remarks on this set can be found in [15].

We have the following remarkable result, due to Skvortsova.

Theorem 9.10 ([11]) There exists a principal filterG such that Th(9311G)
Int.

Proof. First show that if Z is any countable implicative uppersemilattice
then F(Z) ® 1 is B-embeddable in 971, where F(D) is the free distributive
lattice, generated by 2 (i.e. D embeds in F(s) via an embedding preserving
V, -> and 0). The embedding can be defined as follows. First, embed F(D)
into XT as an initial segment (use for this the fact that F(D) is a countable
distributive upper semilattice). For every s E F(Z), let fs lie in the Turing
degree corresponding to s under this embedding. Define

D3 = If : f nonrecursive & (Vs E F(T)) [ f OT f,11) U If: fs <T fl-

Then the embedding -y : F(T) ®1 -* 911, given by y(s) = [Ds] if s E F(s),
and -y(l) = 1, turns out to be a B-embedding (use the fact that every
element in the range of i is the infimum of finitely many Muchnik degrees,
hence Claim 4 of Theorem 9.3 applies).

Given any Brouwer algebra 2 and a, b E 2, let La = {c E 2: c < a}, and
Aa,b = {c E Z : a < c < b}. In both cases, we get a Brouwer algebra. If c E C
is an element such that c V a = b then there is an onto B-homomorphism
v : Qa -* Qa,b (so Th(.C) C Th(Ca,b)). Now, let t1, = (U, V, ->, 0), with
U = {X C w : X finite or cofinite}, be the implicative upper semilattice
whereXVY=Xf1Y,X Y=XcUY,and0=w. LetS:F(a,,)G1-9A
be a B-embedding, constructed as above. It is possible ([11]) to find pairs
{(ai, bi) : i E w} of elements of F(a,,), such that ai E &, ati < bi, and
f1 Th(F((aw)ai,b,) : i E w} = Int. For every i, let bi = A{ b? : j < ni},
with b' E a,, and, finally, let 9 = {i * j * f : j < ni, f E Dbi } (where
Db; E S(bi )). Let E = [E], and, for all i, let Ai, Bi be the images under 6
of ai, bi, respectively. It is not difficult to see that for every i, E = Ai V Bi.
By the above remarks we have that fl{Th(93A;,B;) : i E w} = Int, and thus
Th(972E) = Int.
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It follows from a result in [11] that if . is the collection of proper principal
filters generated by elements that are infima of finitely many Muchnik degrees,
then Int = fl{(Th(9Jt/G) : G E 37}.

Problem 9.11 ([11]) Is it possible to find G E .j such that Th(9fl)/G =
Int?
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